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Preface

My research proposal was based on my search for an unsolved problem concerning

the dynamics of large space structures. My strategy was to identify some feature of the

dynamics for which adequate mathematical tools were not available. In my reading, on

several occasions, I encountered phrases about nonlinearities not being adequately mod-

elled. I determined that some of the simple traditional models for beam behavior did

not have nonlinear counterparts. That is to say, while many sophisticated models had

been developed, some rather straightforward models apparently had not. I was curious

whether the mathematics was available for such models. Finding none, and obtaining the

concurrence of my committee, I started my research.

I do not know how well my model will serve for analysis of space structures. I do

know that the analysis of mathematical tools has been fascinating and enjoyable.

I would like to extend many thanks to the courteous and professional staff of the

AFIT Library. They have efficiently handled countless Intearlibrary Loan requests and

have helped in a variety of local searches. I thank them all.

I would also like to mention that when my proposed research topic was still too

broad, Dr. Bagley posed several questions which were very effective in helping mE to focus

more rapidly on a specific equation. I thank him.

Many thanks are also due to Dr. Lair, who answered a variety of technical ques-

tions and pointed out several refinements. His countless hours, in my behalf, are greatly

appreciated.

Finally, I thank Dr. Quinn. He has been a constant source of encouragement and

guidance. He was always eager and helpful in guiding me in the pursuit of my research.

He went to great effort to guide my efforts as a researcher so that they would be most

effective. Yet, he was careful not to redirect me along any lines other than those I wished

to pursue. He taught me to do research.

Carl Edwin Crockett
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Abstract

A nonlinear partial differential equation, motivated by the transverse vibration of a

beam, is shown to have a unique solution. The existence theory, which is in the setting of

semigroups and evolution operators, is a composite and synthesis of theorems of Kato. The

formulation of the problem and the verification that the formulation leads to a solution

are new.

The introductory chapter provides background on the topic generally. Chapter

provides detailed formulations for the constant coefficient case Chapter 3 describes nonau-

tonomouo cases. The most general theorem is presented herm. In Chapter 4, a moi.. general

case is considered. Namely, Kelvin-Voigt damping with a coefficient which depends on tLe

solution. This introduces a nonlinearity to the problem which makes it of the form fre-

quently called quasilinear. This is a stronger form of nonlinearity than semilinear. Results

of a numerical example are presented.
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AN EVOLUTION OPERATOR SOLUTION FOR

A NONLINEAR BEAM EQUATION

I. Introduction

The central problem of this dissertation concerns a nonlinear partial differential equa-

.ion for the modelling of the transverse vibration of a beam. The particular form of non-

linearity that arises gives the equation a form that is frequently referred to as quasilinear.

Tis is a stronger nonlinearity than the form known as semilinear. The equation is shown

to have a unique solution. The applicable existence theory is a composition of some the-

orems of Kato. The formulation of the problem and the verification that the formulation

leads to a solution are new.

This introductory chapter provides background on the topic generally. Chapter 2

provides detailed formulations for the constant coefficient cases. Chapters 3 and 4 provide

the generalizations.

1.1 Some general background

Partial differential equations are an essential element in the mathematical modelling

of the physical world. The topics that arise in the study of natural phenomena with

partial differential equation models are numerous and varied. Indeed, the fact that two

physical phenomena are very similar does not guarantee any particula connection between

the corresponding mathematical models. In fact, two models of the same behavior, with

one slightly more sophisiticated than the other, can lead to entirely distinct mathematical

entities. Even changes which appear to be very minor or superficial can radically alter the

nature of the solution, and even whether there is a solution. In cases where a solution still

exists, it may be necessary to use entirely different methods to find it (or them).

In the classical theory of partial differential equations the three basic second order

forms are

1. the heat equation ut = uXX



2. the wave equation utt =ux

3. Laplace's equation ut = -uxx.

It is well known that these have quite distinct solution characteristics. The same holds

true for higher order equations. When problems are formulated abstractly, it remains true

that small changes in appearance can lead to significant changes in solution properties.

The equations above have been given names to distinguish their types. The heat

equation is known as an example of a parabolic equation. It has a unique real characteristic

curve. The wave equation is called hyperbolic. It has two distinct characteristic curves.

The Laplace equation is elliptic and has no real characteristic curves. The classifications

are used to distinguish equations whose solutions have certain distinctive behavior.

As an example of a model refinement which may not look too different, Friedman

and Hu [17:pp 249,252] discuss an equation referred to as the hyperbolic heat equation. It

arises when a slight modification to a basic mathematical assumption avoids the physically

unrealistic property, of the usual model, that global temperature changes instantaneously.

The change is to replace the Fourier Law q = -kO, with q + rqj = -kO. for some time

delay r, probably quite small. The resulting equation is

TOjj + Ot - = 0. (1)

In the case of abstract equations the affect of a negative sign or of a change in the

order of the equation can be pointed out by observing that the abstract equations

Ut = Uxx

Utt = U X

Utt = --UXXXX (2)

all have classical solutions. But, in their abstract formulation with homogeneous Dirichlet

boundary conditions, none of the equations

Ut = _UXX

2



att = uXX (3)

has a nontrivial classical solution.

The terms parabolic and hyperbolic do not have the same meaning in the abstract

theory as they do for classical second order equations. (The term elliptic is not used for

abstract equations.) An abstract equation of the form

ut = Au (4)

is called parabolic if the operator A is the generator of an analytic semigroup. It is called

hyperbolic if A is the generator of only a Co semigroup (see Definition 2).

The present work addresses an Euler-Bernoulli beam equation with Kelvin-Voigt

damping. The abstract formulation results in an equation which is hyperbolic. Linear and

nonlinear versions will be considered as well as autonomous and nonautonomous versions.

1.2 An introduction tr the basic equation

A fundamental element -of most large structures is the beam. Over a period of

many years, as the need for more and more accurate modelling has become apparent,

the mathematical equations used to describe beam behavior have become more and more

sophisticated. Similarly, more advanced mathematical tools are used in the development

and analysis of such equations. Herein, attention will be focused on equations for the

transverse vibration of a beam.

In particular, an equation with nonlinear damping will be considered. This will

be preceeded by the treatment of simpler equations in order to build up the appropriate
mathematical machinery. Existence and uniqueness of a solution in the simple cases,

will be established from the viewpoint of semigroup theory. The more complex cases will

require the mild generalization of a semigroup known as an evolution system.

In this section a review of an early model of beam motion will be presented. In

the next chapter the model will be considered from a mathematically sophisticated (ie

3



Figure 1. Cantilevered beam

semigroups) point of view. This will provide a point of departure for the investigation

of more complex and pol entially more precise mathematical models of beam behavior.

Development of the mathematics related to these models is the puipose of the present

work. It is stated at the outset that while beam equations motivated this mathematical

problem, the engineering is left to others. That is to say, while the equations developed

may be of engineering value, it will not be proved here. The current work is limited to-

establishing of the validity of certain mathematical operations.

1.2.1 The traditional starting place

Consider the cantilevered beam. This is a beam which is fixed at one end, as- to a

wall, and free at the other end (see Figure 1). Assume a thin beam whose density and

other physical characteristics are uniform. It is customary to establish a coordinate system,

assumed inertial, whose origin is at the intersection of the beam's centerline and the wall.

The x-axis is chosen along the beam's centerline. It is supposed that the centerline is

straight and represents the natural, rest, or unperturbed position of the beam. Let L be

the length of the beam.

Vertical motion of each point x along the beam, with vertical displacement at time

t represented by u(t, x), is considered. Notice that the physical configuration requires (for

consistency) the following mathematical assumptions:

u(t,O0) =0 (5)

=,t,0 0 (6)

=X tL 0 (7)

4



UXXX(iL) = 0. (8)

(Subscripts indicate partial differentiation with respect to the variable appearing as the

subscript.) The physical interpretations of the boundary conditions are as follows: (5) says

that the left end of the beam is held in a fixed position, (6) says that the beam centerline is

perpendicular to the wall, (7) says that there is no curvature at the right end of the beam,

and (8) says that the curvature at the right end is not changing (ie there is no external

torque).

A large variety of physical situations can be described with only slight changes in

(5)-(8). For example if both ends were free, conditions like (7) and (8) would apply at the

left end. If a control mechanism were attached at the right end, then conditions (7) and

(8) would have nonzero right hand sides. Clearly there are many other physical situations

described by closely related sets of conditions. Of course, u(t, x) must be sufficiently

differentiable for the boundary conditions to make sense. An assumption to this affect is

consistent with typical physical situations.

The simplest model for the transverse motion of a beam is called the Euler-Bernoulli

beam model. It has been in use for over one hundred years. (See Russell [67:pp 177-216]

for an excellent historical review of models.) The following assumptions are made:

1. The density of the beam, m(x), is known and appropriately smooth. It is assumed

to be constant with respect to t.

2. Vertical displacements are small compared to the length of the beam and any hori-

zontal component of motion is neglected.

3. Young's modulus, E, (an experimentally determined, material dependent quantity

that relates the amount of stretching to the amount of force applied, see Kolsky

:37"p 9] for example) and the area moment of inertia along the bending axis, I, are

known and sufficiently smooth (often taken as constant). They are assumed to be

constant with respect to time.

4. Mechanical energy is conserved.



Details of the derivation are provided in Appendix A. The resulting equation is

ut-+(aux)xx =0; 0<x<L; 0< t (9)

where a = --.

This is the simplest mathematical model for a beam. Transverse vibration is allowed

and elasticity of bending is considered. Longitudinal stretching and vibration are ignored,

as are tin, -- -1 ndent changes in material properties. Also ignored are changes in material

properties due to the history and current state of the beams position and motion. Damping

is not modelled and other imperfections are sure to be present. Nevertheless, some starting

place is needed and the Euler-Bernoulli model is the usual place. It provides a specific

equation for use in demonstrating the mathematical tools to be used in further analygis.

1.2.2 Proposed generalizations and analysis of the equation

The linear partial differential equation above is reduced to a system which is first

order in time. Then an appropriate Banach space is chosen and the system is formulated

as an abstract Cauchy problem. Existence and uniqueness of a solution is then established

from standard theorems. A key challenge is to construct the Banach space wisely so that

the operator in the abstract problem is densely defined and has the properties necessary

to justify the application of the theorems.

The quantity a will then be allowed to vary, thus generalizing the problem. First, a

will be allowed to vary with the space variable. This case does not require any additional

theory.

The next generalization will be the introduction of a Kelvin-Voigt damping term. In

this case the equation has the form

Ut + (#u, x)xx + euxxxx = 0. (10)

The underlying assumption of Kelvin-Voigt damping is that the damping depends on

velocity in the same way the basic equations depends on position. A positive value of

P3 represents damping in the system. Negative values of /3, which represent energy input

6



or energy generation, will not be considered. To maintain the step by step approach

to generalization, a is held constant while the damping term is considered. Separate

treatments will be given to the cases of

1. constant coefficient of damping,

2. spatially varying coefficient of damping,

3. temporally varying coefficient of damping,

4. combined space and time variation of the coefficient of damping, and

5. solution dependent coefficient of damping.

It is in the last of these that a true nonlinearity appears. The form of the equation

with this nonlinearity is such that the term quasi-linear is appropriate. Interest in this

particular equation motivated the current research.

In another generalization, a will be allowed to vary with time. This case requires

a more powerful existence theorem. A more general theorem, which is a synthesis of two

theorems of Kato and covers this case, is presented.

1.3 A review of the literature

The review of the literature can be divided into three basic areas. First, a general

overview of some problems which use the same general type of theory as that which will

be used in this work is given. Second, some problems which are closely related (at least

in general appearance) to the current problem are presented. Finally, a review of the

literature which provides the theoretical framework for this work is presented.

1.3.1 A sampling of problems from the literature

Higher order equations are used to describe beam behavior. Ball [3:pg 399] describes

a model which accounts for several affects. The equation is

utt + tuXX' -" + k j id) Utzx + 'Utzxxx

-a JO u d:? u + 6t= 0 (11)

7



He discusses existence, uniqueness, and regularity for the constant coefficient problem.

The approach is more classical than modern (ie not a semigroup approach).

Pivovarchik [59:pg 647] considers the spectrum of a similar looking equation, namely

f + ,,=x + (g(x)u.). + k(x)ut + ut = 0. (12)

More specific examples from the literature will be presented shortly. A brief pause

to make some general comments is appropriate.

The current literature contains a wide variety of problems related to fluid flow, plate

vibration, beam vibration, and the control of these kinds of phenomena. Since small

alterations often make problems which are mathematically distinct, -this literature is quite

voluminous. No complete review will be attempted. However, it is certainly appropriate

to present a sample of the kind of work that is being done.

A brief list of the kinds of items involved in the set up of a problem is now given.

A small change in any of these items can lead to entirely different solution behavior. The

domain may be bounded or unbounded, fixed or changing, and the conditions specified at

the boundary can have a variety of forms. The operators which appear may be bounded or

unbounded, linear or nonlinear, autonomous of nonautonomous, they may be self-adjoint,

skew-adjoint, compact, or closed. The underlying space may be Hilbert, Banach, normed,

linear, metric, or just a set. The order of the equation is significant.

For all of these factors, small changes can affect whether the problem is well-posed,

whether it has a solution, whether solutions are unique, what kind of algorithm can be

used to obtain the solution, or indeed, what notion of solution is appropriate to consider.

A few samples of equations in the recent literature are given.

Bernis [5:pg 227] establishes existence and uniqueness for the equation

(-A)'u + g(x, u) = f (13)

8



on all of RN with certain limitations on f and g. (The symbol A is used for the Laplace

operator.) He also establishes existence and uniqueness for the parabolic problem

Ug + (-A) m u+ I I- u = f (14)

on RN X (0, 1). Again, certain restrictions apply.

The Schr~dinger equation, [68:pg 823],

0T + iAu + IjuP- 1u = 0 (15)

where i = (-1)2, also receives attention.

Cannarsa et. al. [7:pg 2] treat a damped wave equation

uu(, x) = A(u(t, x) + nut(t, x)) + f(t, x) (16)

on a bounded domain with appropriate boundary and initial conditions. They note (pg

3) that even a slight change in boundary conditions sends the problem into the realm of

the unknown. Weak solutions are obtained following a transformation which changes the

problem to one where the operator is the generator of an analytic semigroup. They claim

this approach can be extended to higher order (eg beam) equations.

Kuttler and Hicks [42:pg 1] address existence and uniqueness of a global weak solution

to

mt, + (P(mx)). - (a(m.)m.t). = f(t, x). (17)

Their emphasis is on time dependent boundary conditions.

Other uses of similar theory are found in Euler Equations [2:pp 367-382], porous

medium systems [21:pg 86], and Navier-Stokes equations [36:pg 891]. But, it is time to

turn to equations more closely related to the current work.

1.3.2 Review of literature related to the current problem

9



Fitzgibbon [15:pg 536] addresses (11) as a specific example that comes under an ab-

stract formulation that he gives for a class of quasilinear evolution equations. He examines

ui + aAut + Au = F(t, u, ut) (18)

with appropriate initial conditions. The operator A is allowed to be unbounded, but it

does not depend on t or u. Also, a is a constant. When A is chosen to correspond to the

problem of Ball, it turns out that A is self-adjoint and -A is the generator of an analytic

semigroup, see also [71:pp 631-633]. Existence and uniqueness results are obtained.

Huang [23:pg 714] discusses the closely related equation

utt + But + Au = 0 (19)

where B is related to A in a certain way.

Authors concerned with control theory still tend to use the more basic forms of the

equation while they concentrate on progress in the area of controls. For example, Lasiecka

and Triggiani [44:pg 330] and [45:pg 1] use the relatively mple form

Utt + A 2u - 0. (20)

(See also [39:pg 288], for a classical treatment)

Some recent uses of Kelvin-Voigt damping appear in [4:pg 1] and [6:pg 1391]. The

first uses it in solving for a material property as a distributed parameter. The second

solves for a displacement and stress field in a solid.

Standard treatments of semigroup theory are in [22], [19], [20], and [58].

Several authors have addressed numerical issues related to the implementation of

iterativescheine. An early paper fibcusbing the convergence of difference schemes is 155:pg

321]. For a semigroup style numerical analysis book, see as an example, [64]. Another

reference on discrete schemes, with emphasis on time dependent operators, is [57]. Another,

with emphasis on nonlinearity, is [26].

10



1.3.3 Some methods of analysis

Two lines of argument, for analysis of the types of equations that have been men-

tioned, will now be briefly discussed. Many authors have written on these issues, but it is

not necessary to give a comprehensive review. The two lines of argument to be mentioned

are due principally to Kato and Crandall. A review of the bibliographies of the articles

cited will quickly lead to broad coverage of the topic.

The development of the theory of semingroups goes back several decades. It is appro-

priate to pick up the story with an article by Kato in 1953 [28]. The equation of interest,

in his paper, is
d
dtu(t) = A(i)u(t) + f(t). (21)

This is called an evolution equation because of the time dependence in the definition of

the operator A. He identifies conditions for the existence of a unique solution.

In the years following this publication, several generalizations were obtained. Most

of the extensions were in the direction of weakening one hypothesis or another. Of course,

the goal of such work was to widen the range of applicability of the theory.

The method of proof, of the existence of a solution, involves construction of a sequence

of operators which are shown to converge to the operator in the original problem. The

modified problems corresponding to each of the new operators are solvable. Results which

confirm that the function, to which the sequence of solutions converges, is a solution to the

original problem are of interest. In this regard the paper of Trotter [70] and a correction

to the proof of one of its theorems by Kato [29] are applicable.

By the mid 60's, nonlinear versions were receiving appreciable attention. Of course,

in this more complex setting, many distinct variations of a problem can cause it to fail to be

linear. Hence, the term nonlinear is used with several different meanings in the literature.

In-some-cases it simply means that a function is set-valued rather tban single-valued. If the

forcing function depends on the solution the term semilinear is used. When the operator

depends on the solution, the term quasilinear is used. The terms genuinely nonlinear

and fully nonlinear are alco encountered. Any of the above terms may be abbreviated to

"11



nonlinear in the literature. Hence, it is important to be wary of one's own preconceived

notions of what the word suggests.

The 1971 paper of Crandall and Liggett [8] is considered definitive in bringing the

nonlinear problem well in hand. It establishes 'convergence of an exponential type limit

which converges to the solution, if one exists.

Also in the early 70's, Kato was publishing in the area of linear evolution equations

of hyperbolic type [31] [32]. Recall that if the operator of an equation generates a strongly

continuous semigroup, then the equation is called hyperbolic. An equation whose operator

is the generator of an analytic semigroup is called parabolic.

By the mid 70's, Kato was working on quasilinear evolution equations of hyperbolic

type [34] [35]. In these papers, conditions are given for existence and uniqueness of solutions

and several applications are discussed. Specific applications are discussed in [24] and [33].

Through the 80's, Crandall and Souganidis have published [9], [10], and [11] in the

area of nonlinear equations. Their approach is to start with a difference scheme as an alter-

nate formulation of the problem. Then the convergence of the scheme is addressed. This

approach appears to be more independent of the equation's type. Further, the nonlinear

theory is developed directly as opposed to being an extension of the linear theory. Special

effort is made to show that situations which satisfy Kato's hypotheses also satisfy those of

Crandall. But only in [11] does Crandall claim to have convergence results comparable to

those of Kato.

In the present work, emphasis is on the theorems of Kato from [24] and [351. An

excellent text by Pazy [58] incorporates, in well summarized form, a large portion of Kato's

work. For -onvenience, the text of Pazy will be cited for the introduction of terminology

and most of the preliminary results. Another text, which includes a summary of Kato's

work is [27:pp 237-247].

Other works to broaden perspective include [14] and [53].

-12



1.4 Outline of what is to follow

The second chapter provides a discussion of the abstract version of (9). The discussion

includes basic concepts of the abstract theory and theorems which are sufficient to establish

the existence and uniqueness of a solution. Much of the work done in this setting is key to

the solution of the more general problem. A linear space and some operators are carefully

chosen and shown to have desirable properties. The abstract version of the problem that

has been formulated is shown to satisfy the hypotheses of appropriate theorems. Kelvin-

Voigt damping is then introduced, leading to the equation

utt + V + (auX)X = 0 (22)

and the individual cases of /3 a constant and P3 dependent on x are considered.

In the third chapter, a will be held constant and time dependent P3 will be considered.

This requires additional terminology and theory, which is presented. The cases / depends

on t, P3 depends on x and t, and finally, P3 depends on u are also considered.

The fourth chapter considers a case with a dependent on I. This requires more

theory, which will be presented.

The final chapter summarizes conclusions and recommends specific further work.

Citations to the literature are in brackets and can thus be distinguished from refer-

ences to equations. Throughout the paper the end of a proof is indicated by a box, like

this. 0
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II. Abstract formulations

In this chapter the basic cases are considered. There is quite a bit of terminology to

introduce. This is done in the context of solving the constant coefficient problem. Several

basic theorems are also presented.

2.1 Preliminaries for the constant coefficient case with no damping

The differential equation derived in Appendix A to approximate the unforced trans-

verse vibration of a beam with no damping is

it, + D'(aD 2ii) = 0 (23)

where D. = , and a > 0 represents E r/r. The case for constant a is not difficult.

Indeed, it is easily solved directly by product separation of variables, eg [49:pg 117-120].

Nevertheless, this simple case provides an opportunity to introduce terminology, notation,

and a strategy for solution which will also be applicable to more complex cases.

The equation will be reformulated as a system of first order equations in t. Let

u(t) =(u@t))where the x dependence is suppressed. Explicitly, the values of u(t)

are elements of a function space which carries the x dependence. For convenience, the

usual notation will be u = .The functions ul and U2, when evaluated at any point

in their domain, are required to satisfy appropriate boundary conditions.

The single higher order equation is now replaced with the first order system

ut + Au= 0; t > 0, (0)= Uo (24)

where the vector variable u depends only on t. In order to keep the independent variables

clear, it is reemphasized that while ul and U2 are explicit functions of t, their values at a

particular value of t are functions of x. The vector variable u and the boundary conditions

14



on its components are given by

u u) ui(O) = U1'(0) = u1(1) = uj'(1) = 0. (25)
Ut2

The operator A is given by

A = A, = . (26)
D 4 0

The subscript on A is used to distinguish this particular operator from others that will be

introduced later. When A appears without a subscript, no specific operator is intended.

The operator D is T. The symbol 0 is used as a vector where appropriate without any

special notation. Also, the symbol 1 is used for the identity operator without special

notation. The domain of A1 will be denoted by D(A 1 ). The beam is assumed to be finite,

with length 1. The boundary conditions are as indicated.

2.1.1 Some definitions

Basic terminology is now reviewed to establish a foundation for discussion of the

abstract problem. The first definition is that of a semigroup [58:pg 1].

Definition 1 Let X be a Banach space. A one parameter family S(t), 0 < t < 00, of

bounded linear operators from X into X is a semigroup of bounded linear operators on X if

1. S(O) = I, (the identity operator)

2. S(t+s) = S(t)S(s) for every t,s > 0.

There are several notions of continuity for semigroups. In this work, strongly continuous

semigroups [58:pg 4] are used almost exclusively.

Definition 2 A semigroup S(t), 0 < t < oo, of bounded linear operators on X is a strongly

continuous semigroup (abbreviated Co semigroup), of bounded linear operators if

lim S(t)x = x for every x E X. (27)

ito
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The terminology refers freely to semigroups of bounded linear operators (even when the

generators are not). This is appropriate, as the following theorem shows.

Theorem 3 Let S(t) be a Co semigroup. There exist constants w > 0 and M > 1 such

that

IIS(t)I < Me-t for 0 < t < co. (28)

Proof: See [58:pg 4]. 13

If w < 0 the semigroup is said to be uniformly bounded. If, in addition, M = 1 then

the semigroup is called a Co semigroup of contractions.

It may be possible to identify a generator (conceptually very much like a derivative)

for a given semigroup [58:pg 1].

Definition 4 The infinitesimal generator of a semigroup S(t) is the linear operator A

defined by

Ax = lim S(t)x - x (29)
tjo t

whenever this limit exists.

Notice the conceptual similarity of the generator to a derivative. Not all linear op-

erators are the generators of semigroups. And, some semigroups may have infinitesimal

generators which are only defined on a portion of their domain. The notion of an infinites-

imal generator (often referred to simply as a generator) is useful when its domain is dense

in the domain of definition of the semigroup; ie, the space X mentioned in the first two

definitions. The collection of all operators A such that -A is the infinitesimal generator

of a semigroup on X bounded by a particular ? ,w pair is denoted by G(X, M,w).

Later, it will be useful to invert operators of the form I - 1A for rational A> 0. It

is appropriate to identify the values of A such that this inverse exists. Special attention is

given to values of A for which the inverse is defined on all of X. Some appropriate terms

are now introduced [58:pg 8].

Definition 5 The resolvent set, p(A), of A is the set of all complex numbers A for which

AI - A is invertible. That is, (AI - A)- 1 is a bounded linear operator on X.

16



Definition 6 The family R(A; A) = (Al - A)- 1 , for all A E p(A), of boundcd linear

operators is called the resolvent of A.

2.1.2 Choosing an appropriate space X

The dependent space variable is suppressed in the notation of (24). In the original

formulation i = fi(t,x), but now the problem is formulated in a linear space, X. Tile

elements of X are functions of x which satisfy the boundary conditions of the problem.

Thus v. is a function of t and assigns, to each value of t, a unique element of X. The -T

dependence is hidden in the domain and is not explicit in the function.

It is reasonable to think of (24) as an ordinary differential equation over a linear

space. This is referred to as the abstract formulation of the differential equation and is

known as an abstract Cauchy problem. To be specific, choose

E 12[0, 1] x I[O, 1y1 y satisfies boundary conditions (25)1 (30)
Y2)

Here I P represents the standard Sobolev space (see Definition 8). Notice that X is a

vector space with each component coming from a Sobolev space. TI boundary conditions

are as specified in (25). The following lemma allows an alternate description of X.

Lemma 7 If y E 2 and y(O) = y(1)-= y'(0) = y'(1) = 0, then y E J1g.

Proof. See Appendix D. 0

The particular boundary conditions under consideration make it appropriate to aj)l)

Lemma 7 and describe X in the abbreviated form

x = y= ( E 1I02[0, 1)x H0[0 1]. (31)

Y2 /

The domain [0,1 will often be omitted in the sequel. Hlowever, it is intended fot the

entirety of the paper.

17



For convenience, the standard Sobolev norm is defined. At this point the Sobolev

norm is only used to identify functions which are components of elements in the set X.

Points in the linear space X will hage a norm to be specified momentarily.

Definition 8 The standard (L2 style) Sobolev space H P consists of those functions u such

that
p

I ID'ull < oL2(32)
i=O

where D'u = u and the norm is given by

IIuIIHP - IIDuII) • (33)

The points (pairs of functions) in X have been identified and it is easy to see that

they form a linear space. It is desirable to have a Banach space, and hence, a norm must

be specified for the elements of X. Alternatively, it is appropriate to specify an inner

product for the elements of X and let the norm be the one naturally induced by it. An

inner product will be specified and then it will be shown that X is a complete space under

the induced norm. A preliminary lemma is required.

Lemma 9 If z is absolutely continuous on [0,1] and z'(x) = 0 almost everywhere, then z

is constant.

Proof: See [65:pg 105]. 0

An inner product is now presented. This inner product has been used previously in

[12:pg 16] and [35:pp 144, 147].

Theorem 10 The expression

, = , D 2uD2v dx + u2v 2 dx (34)

2  V2  Jo

where a is a positive constant, defines an inner product on X.
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Proof: This is shown to be an inner product in a straightforward fashion from the defini-

tion (to review the definition, see, for example [54:pg 272], [65:pg 210], or [73:pp 39-40]).

The necessity of having the boundary conditions in the definition of X becomes clear in

the details.

The only issue in doubt is that of positive definiteness. Suppose that

(U ) (t ) = ja D2UID2u + -x 2U 2 dx

U2 U2 0

- ao(D2U,)2dx+ou2dx

0 0. (35)

This requires each integral to be zero, and hence ul" and u2 to be zero, at least almost

everywhere (a.e.). Since functions which only differ on a set of measure zero are treated

as identical, it is clear that u 2 is zero. If the boundary conditions force ul = 0, then the

proposed inner product is legitimate.

Lemma 9 is now applied to show that if z E H2 and z" = 0 a.e., then z = 0. Indeed,

for z to be an element of H 2 requires J z ")2 dx to exist. Since the domain of integration
is bounded, f0' z" dx exists. It follows that z' is absolutely continuous (a.c.). Since z'is

a.c. and z" = 0 a.e., the lemma says z' is constant. The boundary conditions on z' force

the constant to be zero. Thus, z is constant. The boundary conditions on z force this

constant to be zero also. Apply the lemma to ul and positive definiteness is clear.

This completes the proof of the theorem. 0

The norm chosen for X is 11. iX = (. .)1/2. The set X with this norm is the Banach

space that will be referred to in ihe sequel. (Since the norm comes from an inner product

it would be appropriate to call .7 Hilbert space. However, the more general term Banach

space will usually be used.)

2.1.3 Completeness of X

It is important that X be complete. This issue will now be addressed. Several

preliminaries are needed. As a matter of notation, IL denotes the supremum norm.
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Lemma 11 If z E H 2 then 11zllL 2 < IIzIloo,

Proof: It is important for the proof that the function have a bounded domain of definition.

Uz14L 2  Z (/ zx) dx)1/

= Izlloo. m' (36)

Lemma 12 If z E H 2 then, jIzlloI < Iz(O)l + IIz'l1L2.

Proof: Since z E H 2, z' is square integrable. Since the domain is a bounded interval, it

follows that z' is integrable. Then [65:pg 101] z is given (a.e.) by

z(x) =z() + j z'( )d . (37)

It follows that

]z(x) = Iz(o) + jo z'()d ,I

SIz(O) I + jz '() I dx

__ I ()I+ j l'()a

I z(0) I +Ilz'Li. (38)

The Schwarz inequality has been used in the last step. Since the right hand side is free of

x it follows that

Ilzll4 _ I z(O) I + IIz'Il (39)

as desired. 0

This lemma has an obvious corollary.

Corollary 13 If z E HI2 and z(O) = 0, then Iz _ IIz'llL2.
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A similar lemma and corollary, for z' instead of z, follow immediately. When z(0) =

z'(0) = 0, these combine to give

IIZIIL2  I Zoo < Ilz'1L2 1 _<IIco _ IIz"II2 •  (40)

When the above lemmas apply, the following composite result is available.

Lemma 14 For the given norm on X, IjztIH2 < ( )12 ( )1
00 X

Proof: This is proved by using the previous results.

IIZIIH o = (IIzll + II11Z112 + IIZI 12 1 /2

3 ( Z2)
1/  2

= 3)1/2 z (41)

0 X"

This concludes the preliminaries for an argument on the completeness of X.

Theorem 15 The space X, with the inner product introduced in Theorem 10, is complete.

Proof: Let {yn} be a Cauchy sequence in X. Recall that elements of X have two compo-

nents. To be explicit,

Yn} Yi{ n (42)

This will converge to a point y = E X if and only if the first components of the
Y2

given sequence converge to Yi E Ho, and the second components converge to Y2 E K/O.

Convergence will be addressed for each component separately. Keys to the strategy are
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the relationship

Y2, 0 Y2.(::: ) = yi ) +(a )4)
and the fact that (for the specified norm on X) that

Since the left hand side forms a Cauchy sequence, it is clear that each term on the right

hand side must form a Cauchy sequence. Now focus attention on the second term.

For each n, Y2,, E HO. Furthermore,

( )~ = IIY2nIIHO- (45)Y2n

Hence, {Y2n} is Cauchy in" IHO. But, HO is complete by definition, eg [1:pg 44]. Hence,

there exists some Y2 E H° , Y2n --' Y2. This is the desired Y2.

The case of Yi is nearly as simple. Each element of {y',) is in 112, and the strategy

is to find yj in the complete space Ho2 such that Yl, -4 yl. But, this depends on {yjj}

being a Cauchy sequence in the norm of H2. This follows immediately from Lemma 14.

Thus {Y1,} is Cauchy as a sequence in the complete space H 2 and converges, say to yi.

It is easy to see that (/ ) E X and it follows that X is complete. This completes

the proof of the theorem. 0

It is worth noting that the boundary conditions were important in these arguments.

Extension of the result to other boundary conditions is not trivial. Additional comments

on this point are in Appendix B.

2.1.4 Identifying the domain of A1
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It is important to identify the portion of X on which A1 makes sense and has its

image again in X. Let

D(Aj) = Y = E H4 X H2 I Y satisfies boundary conditions (25). (,16)
Y2

Notice that the second components satisfy the boundary conditions. Thi., is expiebssd ii,

the 1I3 notation and omitted from the specifier. Recall that the boundai N colitioi.s \ eje

specified in (25).

Several comments are appropriate to prepare to establish that the domain of .41 is

dense in X. First, note that it is sufficient to consider the components individually. Second.

in the Nkay of notation, the collection of all functions which are infinitely diffe1cntiable and

have compact support on (0,1) will be denoted CO. (It would be mole stauda ld to i ite

C (O. 1) so there is some abbreviation here.) Third, the collectio of fi'mtiois ii II

which satisfy the boundary conditions will be denoted 117.

Theorem 16 For A1 in (26), D(A1 ) is dense in X.

Proof: The skeleton of an appropriate argument has been presented in [12:pg 19]. For

denseness of the first component it is sufficient to establish that H" D J2. Note that

C.^ C 1 H oCH =C' (47)

where the closure is with respect to the 112 norm. The first two inclusioiis are clear. The

last inclusion follows from Lemma 7. The equality holds by definition, cy [1:pg ,15].

Note that Ha = o and that JI4 is the first component of D(A1 ). Also, 1I 2 D 12

and hence HT D H . Denseness of the first components is now clear.

For the second Compouint. it. is suffici-nt to st balkih that lii D /0 Coi id.

C00 c C HOC i= L 2 Cg (,IS)
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where the closure is with respect to the L2 norm. The last containment follows from

Theorem 2.19 of [1:pg 31] (see also [20:pg 253] or [54:pg 592]). Now the denseness is clear.

Since each component of D(A1 ) is dense in the corresponding component of X, it is

clear that D(A1 ) is dense in X. 0

Corollary 17 The inclusions H, C H2 C HO are dense.

2.1.5 Special properties of A, and its adjoint

Later, there will be a need for the adjoint, A*, of A1. Initial definitions and com-

putations are presented now. See [54:pp 352, 527], [63:pp 201, 215], or [73:pg 196] for

details.

Definition 18 The operator A* is called the adjoint of the operator A if (Au, v) = (u, A*v)

for all u, v E D(A).

The following derivation identifies the operator A* for A, defined by (26).

U2 V22aD4u V2

= -ai j D2 U2D 2v, dx + e j0 V2D 4 u dx

= -aDu 2D2v, 11 +a Du2D3v, dx

+av 2 D3u, 11 -aj Dv 2D 3 u dx

= au 2D3vx 1 -a u2D4vl dx

-aDv2 D2u1 ] +0 fo D v2 D2 ul dx

U 
-D 4V2 

(4

U1 04V1(9
U2 -aD 4  0 V2
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where all of the boundary terms are zero and are dropped after their first appearance.

It is interesting that A, = -A 1 . When this occurs, the operator A1 is called skew-

adjoint. Since D(A1) = D(-A 1 ) it follows that D(AI) = D(A1 ). Thus, since A1 is densely

defined, so is A,. (Actually, it is not quite this straightforward. Special care is required in

describing the domain of an unbounded operator. For A1 it is more complete to argue as

follows: Let y E D(A1) be given. The goal is to show that y E D(At). This requires the

existence of some z E X such that for every x E D(A1 ), (Aix, y) = (x, z). Let x E D(A 1 ) be

given. By direct computation (Aix, y) = (x, -Aly). Choose z = -Aly. Since y E D(A1)

and D(A1 ) = D(-A 1 ) it follows that z E X. Thus y E D(At) and D(A1 ) C D(At). The

argument here is reversible and the containment goes both ways. The equality of the two

domains is now clear.) The issue of A* actually being defined on the dual space has been

ignored since X is a Hilbert space and is identified with its dual (eg [73:pg 91]).

Another useful concept is that of the dissipative operator [58:pg 14].

Definition 19 A linear operator A is dissipative if I(AI- A)ull _ Alull for all A > 0 and

all u E D(A).

The idea of an operator being dissipative is quite simple. If Au + u is in some way

less than u, then it is quite reasonable to call A dissipative. If u were a vector it would

be reasonable to think of Au as having a component in the direction of -u. This could

be validated algebraically by considering the inner product and requiring (Au, u) < 0. For

a definition that is acceptable in a Banach space it is reasonable to require u - Au to be

greater, in some sense, than u. If, for every A > 0, it happens that Au - Au is bigger than

Au, then it is certainly reasonable to call A dissipative. This is just what the definition

does.

The following lemma shows that, in a Hilbert space, the desired implication holds.

Lemma 20 If (Au, u) < 0 for every u E D(A), then A is dissipative.

Proof: Basic definitions are sufficient to establish the implication.

II(AI - A)ull = ((Al - A)u, (Al- A)u) 1/ 2
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= (AIu - Au, Au - Au)l/2

= ((Au, Au) - (Au, Au) - (Au, Au) + (Au, Au)) 1 2

=. (A2(u, u) - 2A(Au, u) + (Au, Au)) 1 2

> (A2(u, u) - 2A(Au, u))1/2

S(A 2(u, u))1/2

= Iull. 0 (50)

It is useful to establish that the operators A, and A* are dissipative. First, consider

Al.

Lemma 21 The operator A, in (26) is dissipative.

Proof: Proof is by direct computation.

A1 (U (ui)) = a 2U2 D2 udx+aj'u 2D4ul dx
Ug2 U2 0

= -aDu2D2u, I +aj DU2D 3U dx

+au2D3u, 1 -1 j Du2D3ul dx

=0. (51)

where the boundary terms are again zero. This is sufficient, by Lemma 20, to establish

that A is dissipative. 03

It is immediately clear that -A,, A*, and -A, = (-A,)* are all dissipative. This is

a convenience of having an equality when an inequality suffices in (51). Of course this was

not accidental, the choice of inner product made it happen. It is interesting to note how

such an inner product is chosen.
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If the usual L 2 inner product is used, then the following computations are sufficient

to check whether A1 is dissipative.

(A (n)l (u) = e ( 24 *;1 (U4 (UJU /2 Ug2 D 0 U2 U2

) ,( U,))
-- j U2L 1 dx + jau2 D 4ul dx (52)

This quantity must be less than or equal to 0.

One strategy is to redefine the inner product so that everything cancels. Possible

replacements for - f'l U2ul dx would be

_ .1 au 2D4ul dx,

1  Du2D3 ul dx, or

-/f aD 2 U2D2ul dx. (53)

Each of these, after the appropriate application of integration by parts would show A1

to be dissipative by making the inner product exactly zero. The last candidate in (53)

corresponds to taking a times the L 2 inner product of the second derivatives of the first

components. It has been verified in Theorem 10 that such a replacement leads to a legiti-

mate inner product.

2.1.6 Closedness of A1

It is also important to establish that the operators A, and A are closed. A definition

is first given. See [54:pp 241, 529), f63:pg 300), or [73:pg 77].

Definition 22 A linear operator A is closed if, when any pair of sequences {xn} C D(A) C

X and {y,,} = {Axn} C X both converge, say Xn -4 x E X and Yn - Y E X then x E D(A)

and Ax = y.
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Lemma 23 If A is a closed operator, then so is -A.

Proof: This is clear from the linearity of the space and the equality D(A) = D(-A). 0

The proof of the theorem that will be used to establish closedness of A1 requires a

lemma.

Lemma 24 Let (.,.) denote an inner product on a linear space X. For fixed x E X, let

f(y) = (x, y). Then f is continuous. That is, the inncr product is a continuous function

of its arguments.

Proof: See [20:pp 179-180] or Appendix D. 0

There will be several occasions to use the next result [54:pg 529]. It is actually a

special case of the theorem cited. An additional hypothesis that A be closable and an

additional result that D(A*) is dense are omitted. (The proof of the omitted portion is

relegated to guided exercises in [54:pp 531-532]. A different proof is in [25:pg 172]. See

also [63:pp 299-300].)

Theorem 25 Let A be a densely defined linear operator on a Hilbert space H. Then the

adjoint, A*, of A is a closed operator.

Proof: Let u* -~ u* and A*u* * w* with u* E D(A*) for all n. By the definition of

adjoint, (Au, un) = (u, A*un) for all u E D(A). From the continuity of the inner product it

follows that (u, w*) = (Au, u*). But, again recalling the definition of adjoint, u* E D(A*)

if there is some z E X such that (Au, u*) = (u, z). When this occurs z = A*u*. Clearly,

z = w* is the element needed and A*u* = w*. Thus u* E D(A*).

This establishes that A* is closed. 0

Lemma 26 The operator -A 1 , in (26), is closed.

Proof: Recall that A* = -A 1 and that D(A[) = D(A1). Thus, since D(Aj) is dense in

X so is D(A*). (A more general approach would be to apply Theorem 1.4.5.c of [58:pg 15]

and Theorem 7.10.3 of [54:pg 529], but this is not necessary in the present case.) Then,
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by Theorem 25, A,* is a closed operator. But A** = A1 (It is almost trivial to verify this

directly. It is not surprising in the Hilbert space setting, for example see [54:pg 353] for the

case of bounded A.) so A1 is a closed operator. It is immediate that -A 1 is also closed. 1

2.1.7 The generator of a Co semigroup of contractions

It is important that the operator -A 1 be the generator of a CO semigroup of con-

tractions. This is an immediate result of th- next theorem.

It is useful to note that the literature is not uniform in the use of A and -A. This

result, from the form in which the original differential equation is written. That is to say

ut + Au = 0 and ut = Au correspond to opposite sign conventions. Also, some authors

use accretiveness instead of dissipativeness which leads to opposite sign conventions. It is

important to be self-consistent. Nevertheless, it frequently requires a conscious effort to

keep this, somewhat annoying detail, straight.

The next theorem provides a useful tool for establishing that certain operators are

the infinitesimal generators of CO semigroups.

Theorem 27 Let A be a densely defined closed linear operator. If both A and A* are

dissipative, then A is the infinitesimal generator of a Co semigroup of contractions on X.

Proof: See [58:pg 15] or [40:pg 87, Theorem 4.4]. 0

Corollary 28 The operator -A 1 ti (26) is the generator of a Co semigroup of contrac-

tions.

Proof: It has been established in the preceeding subsections that the hypotheses of the

theorem are satisfied. Hence -A 1 is the generator of a Co semigroup of contractions. 0

2.2 Remarks

It is interesting to note that A1 is, in fact, the generator of a group. (Use Theorem

27 on A* and A**. Also, see [19:pg 22, 2.16, pg 32 Theorem 4.7], and [58:pg 22, Theorem

1.6.5 and pg 41, Theorem 1.10.8].) This fact is not of any immediate interest. However,

29



it is appropriate to note that this feature can be useful. For an example, see [43:pg 745]

where it is used in a controls problem.

A distinctive feature of this work is the attention to hyperbolic problems. This means

that -A 1 is the generator of a CO semigroup but not necessarily of an analytic semigroup

[35:pp 128-129]. If it were the generator of an analytic semigroup then the theory of

parabolic equations would apply, eg [16:pg 108]. It is appropriate to verify that the current

problem does not fit into the more specialized category. This is proved in Anpendix C to

avoid too much of a distraction at this point.

2.3 Finishing up for constant a

It is time to complete the constant coefficient problem. The preliminaries have been

rather complete and have included verification of the hypotheses of the existence theorem

to be presented now. The next theorem guarantees the existence of a unique C1 solution

to (24) for any uo E D(A). A solution is an X valued function u(t) that is continuous on

[0, oo), continuously differentiable on (0, oo), has u(t) E D(A) for all t > 0, and satisfies

the differential equation (24) for all t > 0 [58:pp 105, 139].

2.3.1 The existence theorem

Theorem 29 Let the operator -A be the infinitesimal generator of a Co semigroup S(t).

Then (24) has a unique solution u(t), which is continuously differentiable on [Ooo), for

every initial value in D(-A).

Proof: See [58:pp 102-104]. 0

Theorem 30 The abstract Cauchy problem (24), with A. replaced by A , , has a unique

classical solution.

Proof: To see that the hypotheses of the preceeding theorem are satisfied, it suffices

to review Theorem 16 and Theorem 27 (which in turn depends on Lemma 21 and the

comments following it). This theorem now follows from Theorem 29. 0
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This completes the existence and uniqueness argument for constant a > 0. The

solution is given by

u(t) = S(t)uo (54)

where S(t) is the semigrcup generated by -A 1 .

2.3.2 Continuous dependence

It may be that u0 is not known exactly, or even if it is known, it may be that it

cannot be represented exactly. In either of these cases it becomes important to know

whether small changes in u0 lead to only small changes in u(t). This is usually referred to

as continuous dependence of the soi. 'ion on the data.

For the current problem, S(t) is a Co semigroup of contractions. This means that

IISII _< 1. Hence, the following theorem is straightforward.

Theorem 31 The unique classical solution of (24), with A replaced by A 1, depends con-

tinuously on the initial data.

Proof: Suppose fto is an initial condition, possibly different from uo. Let e > 0 be given.

For t > 0, let fi(t) = S(t)fio. Then

Ilu(t) - f(t)llx = IIS(t)u o- S(t)follx

= IIS(t)(uO - f1o)llx

_< ISlIx Ilu - foilx

< Iluo - uO11x. (55)

Choose 6 = e and the continuity of the dependence is established. 0

2.3.3 Constructing a solution

Before consideration is given to generalizations of the problem, it is appropriate

to consider how the solution, whose existence has just been established, can actually be

obtained.
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If the operator -A is bounded, and the infinitesimal generator of a Co semigroup,

then the solution to (24) is given by u(t) = e-Auo. Since A1 in (26) need not be bounded,

limit definitions (with the same flavor as that of e- A) must be carefully analyzed to assure

convergence. But, the conditions which assure that -A, is the generator of a Co semigroup

do just that. When it exists, e - A is the semigroup S(t). This motivates the terminology

for -A as the generator of S(t). The solution always has the form u(t) = S(t)uo. The key

issue in applications is to determine when S(t) can be determined from A. When S(t) can

be obtained, the first component of u(t) is the solution to the original problem.

Here is one way of obtaining a semigroup [58:pg 33].

Theorem 32 Let S(t) be a Co semigroup on X. If A is the infinitesimal generator of S(t)

then

S(t) = lim I - A x = lim n R n :A x (56)
n-+oo ( nn,-+It (

for x E X, and the limit is uniform in t on any bounded interval.

Proof: See [58:pp 34-35]. A more general development is presented later in the same

reference, [58:pp 89-92]. o

In the event that the operator A is either not known precisely or cannot be represented

precisely, it is of interest to know whether the semigroup generated by an approximate A is

close to the semigroup that would have been generated by an exact A. This has the same

flavor as the continuous dependence considered above. Indeed, it would be appropriate to

ask whether the semigroup depends continuously on the generator.

Results of this type are obtained by considering a sequence A, which is assumed to

converge to A in an appropriate sense. The question is whether the corresponding semi-

groups S(t) converge to the semigroup generated by A. Formal results in this direction

often consider also whether A depends continuously on S. Results of this type are referred

to as Trotter or Trotter-Kato theorems. (Trotter presented the pioneering work in the

linear case. Kato corrected an error in the published proof.)
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For results applicable to the current problem, see [58:pp 35, 84-89], [19:pp 44, 48],

or [73:pg 269]. The results are that three distinct convergences are in fact equivalent: the

operators, the semigroups, and the resolvents of the operators.

The works of Crandall, eg [10] and [11], provide an alternate approach. The alternate

approach will not be pursued here. However, it is appropriate to note that it started with a

fundamental paper in 1971 [8]. The key theorem has a somewhat sketchy proof. A detailed

version is provided as Appendix E.

2.4 Spatially dependent coefficient

Consider utt + D2(a(x)D2u) = 0. Assume that a is continuously differentiable with

respect to x and for some armin > 0, a(x) > amin >-0 for all x E [0,1]. Choose the space X

and its inner product as before. For the validation of the inner product to go as before, the

strict inequality in the requirement a(x) > 0 is necessary. This is because (35) must hold

with a inside the integral, otherwise the argument is unchanged. This time the operator

is defined as follows:

A - D2(a(.)D 2) 0 )
Clearly A 2 is a linear operator. Note that D(A2) = D(A1). In order to determine A* let

u E D(A2 ) be given, then

(A2 (1 VI )11 V1 V

U2 V2 D2(a(.)D2)u d v2

= -a(x)DU 2D 2vi + D 2D(a(x)DvI) dx

+v2D(a(x)D2ui) D 2D(a(x)D2 uI) dx

Su+ 2D((x)D2v) 11 -_ u2 D2 ((x)D2,) dx

-Dv 2a(x)Di I + o(x)D uD 2vdx
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(2( (x)D2) 0 V2

where a:: of the boundary terms are zero.

Observe that A1 ( 2 ) and hence, as before A2 = -A 2 . Since the

steps are reversible, it is easy to see that (A*)* = -A* = (-A2)* = A2. By Theorem 25,

-A 2 is closed.

Next, it is necessary to show that -A 2 is dissipative. For u E D(A 2 )

%A2(u)'UI ) U1 UD24 u) ) :JU2 U2 -D2(a(')Du) 'U2

= j a(x)D2 U2D 2 u dx - j U2D 2(a(x)D2u,) dx

= a(x)DusD2 ui I - 101 Du2D(a(x)D2u dx

-U2D(c(x)D ) 0 +j DU2 D((x)D )dx

-0 (59)

where again the boundary terms are each zero.

Clearly A 2 is also dissipative in this case. But A2 = (-A 2)* and thus (-A)* is

dissipative. Now all of the theorems apply as in the case of constant a and guarantee the

existence of a unique solution to the differential equation.

2.5 Constant coefficient Kelvin-Voigt damping

Consider uut + Put_ x., + aux.,_ = 0 with u(0,x) = uo, ut(0,x) = ugo with the

boundary conditions as before. Throughout this section a is a positive constant. To begin,
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S(( 1)( D2( )(J) (58)U2 - a((x)D 2) o V2

where a:: of the boundary terms are zero.

Observe that A! = ) and hence, as before A* = -A 2. Since theO b e v h t A ( - D 2(a ( )D 2 )  0 2ec ,A

steps are reversible, it is easy to see that (A*)* = -A* = (-A2). = A2. By Theorem 25,

-A 2 is closed.

Next, it is necessary to show that -A 2 is dissipative. For u E D(A2)

( 2 2 -D2(a (D2U) (U4

- j a(x)D2
2 D2 ul dx - j u 2D2(a(x)D2u) dx

2, 1 2
- c(x)DU2D~u IJ0  DU2D(a(x)Du) dx

-U2D(a(x)D2ui) 0 + j DU2D(a(x)D dx

-o (59)

where again the boundary terms are each zero.

Clearly A2 is also dissipative in this case. But A 2 = (-A 2)* and thus (-A)* is

dissipative. Now all of the theorems apply as in the case of constant a and guarantee the

existence of a unique solution to the differential equation.

2.5 Constant coefficient Kelvin- Voigt damping

Consider utt + flutxxxZ + auxxxx = 0 with u(O,x) = uo, ut(O,x) = uto with the

boundary conditions as before. Throughout this section a is a positive constant. To begin,
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- 3DU2D 2U2 I -P jo (D2u 2 )2 dx

< 0 (64)

since P > 0.

The next task is to identify (-A 3 )*.

-A U1 (65)Ua2 V2 - UD1a - Du 2

= a D D2u2D2vi dx - a f v2D4u, dx - 1 0oV2D4u2 dxI
= aDu2D2 v I - 1 Du2D3 vi dx - av2 D3u, 11

+a j 2 .v 2 D 3 ul dx - 13v2 D 3u2 11 +131 Dv2 D 3u 2 dx

- -ou 2 D 3 V I11 +a u2 D4vl dx + aDv2D 2U, I1

-a j D2v 2D2uj dx + PDv2D2u2 10 -fP D2v2D2u 2 dx

-- a j1 D2 V2D2uj dx + a fDD v 2 Du-2 dxD D
1 1 1

-a- D2V2D'u1 dx + ae jU 2D4vj dx + 3U2 D3 V2 11 -P D4 V2U2 dx

4 4 1 (66

U2 eD4 -PD 4  V2

Thus (-~A 3)* = (D
( a D 4  .-_ D 4

Notice that this operator is not skew-adjoint. Hence, the operator -A 3 is not the

generator of a group as in the previous cases.

It is necessary to check whether the operator (-A 3)* is dissipative. The details here

follow as for -A 3 except for a few sign changes in the intermediate steps so that the result

is the same, and consequently, the details are omitted.
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It is also important that -A 3 be a closed operator. But the adjoint of a densely

defined linear operator is always closed (see Theorem 25). Since, in the present case

-A 3 = ((-A 3)*)* and (-A 3 )* is densely defined (same domain as A3), then -A 3 is closed

as desired.

The existence of a unique C1 solution, u(t), to (60) for any u0 E D(A3) is now

guaranteed by Theorem 27 and Theorem 29.

2.6 Spatial dependence in the damping coefficient

Consider utt + D2(p(x)D2ut) + aD4u = 0. Assume P(x) > 0 for all x E [0, 1], and a

a positive constant as before. Formulate the abstract system as before with the operator

defined as follows:

A = A 4  (a= 4 DQ(.)D2) (67)

Note that D(A 4) = D(A 3 ). It will now be established that -A 4 is dissipative. The

details follow the pattern of the case for constant P3. Boundary terms are zero as before.

The symbol ' and the symbol D will both be used to represent differentiation with respect

to the spatial variable. Let u E D(A4) be given. Then,

(-A4'1,U) 0 ((1 DU()2)(~ )(4
-aD4 -D 2(p(.)D 2) U2 ( 2

-eD 4U,-D 2 (0(')D2 U2) U2

,21 dx + (-aDu - D2(/3(x)D2 U2)) u2 dx
j o 2

= U1
1

1 -a I U21UlIII dx - CM2 U1  +a U U1  dxJo Jo

-u 2D(3(x)D2 U2 ) I + 0 u D(p(X)D 2 U2) dx

= u11(x)D2 U2 110 - 101 U2i3(X)U 2 dX

-1X)(U2" )2 dx (68)
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and this is clearly not positive since I3(x) > 0 for each x.

Next the adjoint (-A 4)* of -A 4 will be computed. Again the details follow as in the

case for constant Pt. For u E D(A4),

(-A4Uv) =2)
-aD' -D'(Pl(')D )  U2 V2(() ( )
-aD4U - D2(p(.)D 2 U2 ) V2 )

= a 11U2/Vl I dx - 10' (aD 4U, +D D2 Q(x)D2 U2)) V2 dx

/ 1 i/l l If//i
= aU2 VI -a u2 VI' dx - av2ul Io -- aV2u'l dx

01 2

-v 2D( "(x)D 2 U2 ) 11 + j V2 2D(x)D2 2U2 ) dx

= -au 2V' 0 dO U2 D 4v l dx + aCv2 U1  0 / -f V2 "udx

+V2'f3(X)u 2/ 110 - oV2f//P(X)U 2" dx

= - j V2 I/'u 1
1 dx + a jU 2D4v dx - V2 /f(x )U2" I' + u2'D(3(X)V2

1 ) dxf ) o 0 f)JO ~aV2 uudx + aj U2 D v, dx + U2D(/3(X)V 2 "' 0~~uD(3(~ 2 /

.(2 ( a D2( ()D2) (J

= (u, (-A 4)*v). (69)

Therefoie, 0 -1 (70)

A= 4 D -D 2 (p(.)D2 )

The argument to show that (-A 4)* is dissipative follows the estab.ished pattern and

has the desired result.
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The domain, D((-A 4)*), of (-A 4)* is the same as D(A 4). This is clear from an

inspection of the operators. Hence (-A 4 )* is densely defined. Note that ((-A 4 )*)* = -A 4

and thus -A 4 is closed by Theorem 25.

Existence of a C1 solution in now assured by Theorem 27 and Theorem 29 as before.

2.7 Chapter summary

Basic theorems of semigroup theory have been reviewed and the concept of abstract

formulation of a differential equation has been discussed. A careful description of a linear

space and a careful selection of operators have been provided to demonstrate the termi-

nology. The hypotheses of an appropriate existence theorem were shown to be satisfied.

The beam equations for constant and spatially varying a have been considered. Also,

for constant a, the cases of constant and spatially varying 03 have been considered. Exis-

tence and uniqueness of solutions has been established.

In the next chapter, consideration is given to a nonautonomous problem. All of

the present chapter's concepts will be needed there. Additional concepts will also be

introduced.
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III. The nonautonomous problem

In this chapter the coefficient of damping is allowed to vary with time. A suitable

theory for this case will be presented. Combined temporal and spatial dependence is not

difficult once the time dependent case is complete. The case of a time dependent a is also

treated. This will require the introduction of an additional theorem.

8.1 An overview of the simple nonautonomous case

Consider uut+D 2 (P(t)D2ut)+aD4u = 0. Assume a > 0 and P3(t) >_ 0 for all t E [0, T].

Furthermore, P3 is assumed to be continuously differentiable. As before, formulate the

problem as the abstract system

ut + Au = 0; u(0) = uO (71)

where now,

A = A(t)= As = (72)
( cD4 P(t)D 4

where D(A5 ) = D(A3). Note that for each t this behaves the same as in the case of

constant P3. The arguments for the adjoint and dissipativity are not repeated.

Because of the explicit time dependence, (71) is called an evolution equation. For

each t > 0, the previous arguments apply to establish that -A 5 is the generator of a Co

semigroup of contractions which provides a solution as before. If P3(t) is suitably smooth

it is reasonable to expect to be able to piece together, from the solutions for individual

values of t, an overall solution. However, the theorems which gave solutions for individual

values of t do not guarantee the necessary behavior (eg continuity, differentiability) for

their composite to be a solution of the evolution equation.

The solution strategy is as follows. At t = 0 the state of the system is specified.

The solution of the equation for /3(0) is some surface, as in Figure 2. But, since /3 changes

with time, this solution is only accurate for small values of t. Suppose T, the largest value
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t

Figure 2. The initial solution

of interest, is larger than the interval for which the solution based on P3(0) is sufficiently

accurate. Then an iterative procedure is used. This will be briefly outlined.

Let 0 = to < tI < t2 < ... < t,, = T describe a partition of [0, T]. Apply the

results of the earlier work to the constant coefficient case corresponding to P3(0). Let

f(t) = So(t - to)uo on [to, tj], where So is the semigroup generated by -A 5 (0). Then

fi(t1) is an estimate of u(tj). Apply the earlier work again, this time for the constant

coefficient i3(ti). This gives f(t) = S(t-tl)fi(t) on [tl,t2]. Take fi(t 2 ) as an approximate

value for u(t2). If P3(t) is appropriately smooth then a solution with any specified accuracy

is possible by choosing a small enough upper bound on max{11 - tj- 1 j = 1,2, ... , n}.

Conceptually, this is like Euler's method in numerical analysis.

In this section, necessary conditions for the solution strategy to make sense are

identified. This will be preceeded by appropriate introductions of additional terminology

and theorems.

In the earlier solution strategy a semigroup S(t) was obtained from its infinitesimal

generator -A 3 . But A5 = A(t) depends on t and there is some risk of confusion of

parameters. The semigroap generated by -A(t) will be denoted St(s). Suppose now that

a limiting operator, which always uses the current element of the semigroup, is desired.

This might be represented by something like Se(s), but this would certainly be confusing.

An operator is needed which can propogate from some time s to some time t while using

the appropriate element of the semigroup at each instant of time.

The common choice of notation for this situation is U with two parameters. Namely,

U(t, s) is used for the desired operator, when it exists. The term evolution system is used
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to refer to U(t, s). (Some authors use the term evolution operator.) So, while U and S play

roles which are conceptually very similar, the terminology is quite different. The following

standard definition is taken from [58:pg 129].

Definition 33 A two parameter family of bounded linear operators U(t, s), 0 < s < t < T,

on X is called an evolution system if the following two conditions ere satisfied:

1. U(s,s) = I, U(t,r)U(r, s) = U(t, s) for 0 < s < r < t < T.

2. (t, s) -+ U(t, s) is strongly continuous for 0 < s < t < T.

When there is an evolution system corresponding to a problem with a time dependent

operator, the evolution system is used to produce a solution in the same way a semigroup

is used for the autonomous case. That is, u(t) = U(t, 0)uo.

Notice that property 1 of an evolution system (Definition 33) says that small steps

and large steps give the same result as long as the ultimate end points are the same.

With A5 allowed to depend on t, the same basic ideas as before are still applicable. It

is necessary, however, to modify the requirements on A5 to assure existence of a solution.

Of course some smoothness of the map t --.+ A(t) is required. The map is required to be

continuous and also the concept of a stable family {A(t)}tE[oT] is introduced. Further,

since A5 is allowed to change as t changes, there is the possibility, for an iterative scheme,

that the image of As(t 1 ) would fail to be in the domain of As(t 2) (see Figure 3). This

would cause the iterative scheme to fail. It is useful to identify an appropriate subspace Y,

Y C X, such that for all t E [0,T], it happens that Y C D(A(t)). In this regard the notion

of Y being A (t)-admissible is presented. Such a Y will not be very meaningful unless it is

dense in X. This will be required.

When a solution is obtained in Y, it is termed a Y-valued solution [58:pp 139-140].

This is not a significant restriction for the application under consideration since Y will be

all of D(A). However, the properties of Y-valued solutions are useful.

Definition 34 A function u E C([0,T] : Y) is a Y-valued solution of the initial value

problem (71) if u E C'((0,T] : X) and (71) is satisfied in X.

42



X fD(As(ti))
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Figure 3. The different domains

Theory sufficient to establish the existe.c- #f a unique solution is presented in the

next section. The development is gradual in that several of the theorems will be minor

extensions of the immediately preceeding theorem. While this means there will be some

overlap, it also has the advantage of step by step development. Most of the proofs will be

by citation only. That is, while all the theorems are available, is seems prudent to gather

statements of the theorems together here. It is not necessary to reproduce all the proofs.

3.2 The simple nonautonomous case

The specific problem introduced in (71) and (72) is now addressed.

3.2.1 Some technical preliminaries

A fundamental concept is that of a stable family [58:pg 130].

Definition 35 A family {A(t)}tE[o,T] of infinitesimal generators of Co semigroups on a

Banach space X is called stable if there are constants M > 1 and w (called stability con-

stants) such that

p(A(t)) D (w, oo) for all t E [0,TI (73)

and

1J R(A :A(ti)) M(A - ~ (74)
j=1

forA > w and every finite sequence 0 < t1 _ t2 _ . k T;k = 1,2,....
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For k = 1 this is just the resolvent condition for an individual operator A to be the

generator of a Co semigroup [58:pg 12, Corollary 1.3.8]. Stability of the family essentially

means that the bounds on the resolvents of individual operators A(t) can be combined

to give a bound on the composition of resolvents of A(tj)'s. There are other conditions

equivalent to (74), eg [58:pg 131, Theorem 5.2.2].

The next theorem is a standard, very powerful, result.

Theorem 36 (Hille-Yosida) A linear operator A is the infinitesimal generator of a

Co semigroup of contractions S(t), I > 0, if and only if A is closed, D(A) = X, and

the resolvent set p(A) of A contains R+, and for every A > 0

IIR(A A)II < i/\. (75)

Proof: See [58:pp 8-11]. 0

There will be several occasions to use the following criterion to establish that a

particular family is stable.

Lemma 37 If, for each t E [0,T], A(t) generates a Co semigroup of contractions, then

the family is stable.

Proof: This is a straightforward application of Definition 35. For contraction semigroups

it is appropriate to choose w =_ t. Then, for each tj, appeal to Theorem 36 to bound the

resolvent by 1/A. Now it is clearly suitable to choose M = 1. 0

Now the phrase A-admissible will be defined [58:pg 122).

Definition 38 Let S(t) be a Co semigroup and let A be its infinitesimal generator. A

subspace Y of X is called A-admissible if it is an invariant subspace of S(t), t > 0, and the

restriction of S(t) to Y is a Co semigroup in Y (ie, it is strongly continuous in the norm

I1" 11y).
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3.2.2 Key theorems

A first step toward finding the evolution system for (71) is given in the following

theorem [58:pg 135]. The space Y in the theorem bas not yet been chosen. When the

choice is made, it will be with these hypotheses in mind. The points of Y will come from

X and the restriction, of an operator A, to Y will be called the part of A in Y and be

denoted by A. When it is time to apply these th rems, the place of A will be taken by

-A 5 defined in (72).

Theorem 39 Let A(t), 0 < t < T, be the infinitesimal generator of a Co semigroup St(s),

s > 0, on X. Suppose the family {A(t)}tE[o,T] satisfies the conditions

1. {A(t)}tEo,ris a stable family with stability constants M,w.

2. Y is A(t)-admissible for t E [0,T] and the family {(t)}tE[o,T] of parts A(t) of

A(t) in Y, is a stable family in Y with stability constants M,C.

3. For t E [0, T], D(A(t)) D Y, A(t) is a bounded operator from Y into X and t -4 A(t)

is continuous in the B(YX) norm 1" IIy--,x.

Then, there exists a unique evolution system U(t, s), 0 < s < t < T, in X satisfying

1. IIU(t,s)II < Mew(t- s) for 0 < s < t < T.

2. a+ U(t, s)v It=,= A(s)v for v E Y, 0 < s < T.

3. !U(t,s)v = -U(t,s)A(s)v for v E Y, 0 < s < t < T.

The derivative from the right in the second item and the derivative in the third are in the

strong sense in X.

Proof: See [58:pg 135-138]. 0

The properties of U established in the theorem are useful in demonstrating the

uniquen2ss of the candidate solution it generates. The portion of the proof which describes

the construction of the evolution system is repeated here for convenience and because of

its role in the construction of a solution.
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Consider an approximation of the family {A(t)}tE([O,T by piecewise constant families
{An(t)}tE[o,T], n = 1,2,..., defined as folhws: Let tn = (k/n)T, k = O,1,..., n and let

An(t) = A(tn)fortn <t < k=0,1, .,n-1(7k- k+,, k.. , , (76)
An(T) = A(T).

Since t -- A(t) is continuous in the B(Y, X) norm it follows that

IIA(t) - An(t)IIY.., X 0 as n -+ 0o (77)

uniformly in t E [0, T]. From the definition of An(t) and the hypotheses of Theorem 39 it

follows readily that for n > 1, {An(t)}t[o,T is a stable family in X with constants M,w

while {An(t)}tE[o,T] is a stable family in Y with constants M, C.

Next, for each n define a two parameter family of operators Un(t, s), 0 < s < t < T

by,

fy St(t - s) for t< s < t < t+(

Un(t, S) Stn(t - tn) [ St,? (7:)] Stn(tn S) (8
for k > 1, ti < t < ti+, tit < s < tt

It is straightforward to verify that Un(t, s) is an evolution system. Then, let

U(t,s)x = lim Un (t,s)x for x E X, 0 < s < t < T. (79)

Details of the proof that this limit exists and is an evolution system are in [58:pg 135-138].

Now consider the associated uniqueness result.

Theorem 40 Let {-A(t)}tEo,TI be a family of infinitesimal generators of Co semigroups

on X satisfying the conditions of Theorem 39. If the initial value problem (71) has a

Y-valued solution u, then this solution is unique; and moreover, it is given by

u(t) = U(ts)v (80)
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where U(t, s) is the evolution system provided by Theorem 39 and v is the value of u (it

time t = s.

Proof: See [58:pg 140]. 0

The niext theorem completes the list of properties required of U ill 01(101 to guai a Wiee

existence of a solution. In its p~roof, the need for results so far obtainied becomies cleail.

Theorem 41 Let {A(0t)}[ 6 OT satisfy the conditions of Theorem 39 and let U(I, s), 0 <

s < t < T be the evolution system given in Theorem 39. If

1. U(t, s)Y C Y' for 0O<s < t < T anid

2. For v E Y. U(t,s)v is coinuwous inl Y for 0 < s < t < T

then for every v E Y', UQI, s)v is the unique Y- valucdl solutiton of the initial valtic probhmi

dv,(t)/dt = A(t)u(t) for 0 < s < t < T (81)

?I($) = v. (82)

Proof: See [58:1p- 1411. 0

3.2.3 A strenzgthened hypothesis

An alternative for the seconid hypothesis of Theorem 39 is nfow presenited. It will

be referred to as condition 2+. This condition appears in [35:pg 138]. It will be used to

establish the additional hypotheses of Theorem 41.

(2+) There is a. family f{Q(t)tE[o,TI of isomorphiisms ([54:pg 173] or [65:1p18-l, 199]))

of Y onto X such that for every v E Y,. Q(I)v is Lipschitz continuous inl oil I E 10. T]

a(il

Q(t)A(t)Q2(t)- A(t) + B(t)(83

where B(t), 0 < t < T, is a strongly conitinuous family of bounided operators onl X.

The next lemma establishes that this is indeed at least as stron a conditioni as

hypothesis 2 of Theorem 39.
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Lemma - typothesis I of Theorem 39 and condition 2+ imply hypothesis 2 of Theorem

39.

Proof: See [58:pg 142]. The condition 2+ is not as strong as the corresponding condition

in the reference. Yet, the proof carries over with no essential modification. Also, see

comments in Appendix D. 0

Next it will be shown that the condition 2+ is, in fact, stronger than hypothesis 2 of

Theorem 39. A preliminary lemma is appropriate.

Lemma 43 Let U(t,s), 0 < s < t < T be an evolution system in a Banach space X

satisfying IIU(t,s)II <_ M for 0 < s < t < T. If H(t) is a family of integrable linear

operators in X such that for almost every t, IIH(t)Ij < H < oo, then there exists a unique

family of bounded linear operators V(t,s), 0 < s < t < T on X such that

V(t, s)x = U(t', s)x + j V(t, r)H(r)U(r, s)x dr for x E X (84)

and V(t,s)x is continuous in s, t for 0 < s < t < T.

Proof: The proof is standard for Volterra integrals of the second kind. For details see

[58:pp 142-143]. The hypothesis of integrability is replaced, in the reference, with strong

continuity. But, with the bound H described in the hypothesis, the cited proof holds with

no essential modification. IJ

Theorem 44 Let A(t), for 0 < t < T, be the infinitesimal generator of a Co semigroup on

X. If the family {A(t)}t[O,T] satisfies the conditions 1 and 3 of Theorem 39 and condition

2+, then there exists a unique evolution system U(t, s), 0 < s < t < T, in X satisfying the

following 5 conditions:

1. IIU(t, s)lI _ Me(t--' ) for 0 < s < t < T,

2. -.U(t,s)v It=,= A(s)v for v E Y, 0 < s < T,

3. U(t' s)v -U(t,s)A(s)v for v E Y, 0 < s < t < T,

4. U(t,s)YCY forO <s <t <T, and
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5. For v E Y, U(t, s)v is continuous in Y for 0 < s < t < T.

Proof: See [58:pp 143-145]. Some comment on the cited proof is appropriate since the

condition 2+ in this work is weaker than the corresponding condition in the reference.

In the reference, Q is required to be continuously differentiable. Then Q represents the

derivative. In this work, Q is only required to be Lipschitz continuous. But Lipschitz

continuity implies absolute continuity which implies that there is some integrable function,

which will also be denoted Q, such that

Q(t) = Q(o) + (7(r) dr. (85)

A similar result is obtained in [38:pp 505-5071.

It follows that Q is differentiable a.e. with the derivative given by Q wherever the

derivative exists.

The boundedness of Q-' and the differentiability of Q a.e. lead to the differertiability

of Q-1 a.e.. Where it exists, the derivative is given by

dd (Q(t)-lx) = -Q(t)-,Q(t)Q(t)-jx. (86)

With these observations, the proof goes through as cited. 0

These results can be combined as a corollary, as in [58:pg 145].

Corollary 45 Let {A(t)}tE[o,7I be a family of infinitesimal generators of Co semigroups

on X. If {A(t)}E[,T] satisfies the hypotheses of Theorem 44 for every v E Y then the

initial value problem

du(t)/dt = A(t)u(t) for s < t < T, (87)

u(s) = v, (88)

has a unique Y-valued solution, u, on s < t < T.

3.2.4 The existence theorem for solving (71)
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The problem of solving (71) will fall under the following special case of Corollary

45. The theorem is to be applied to -A 5 , as discussed previously. The next theorem is a

special case of Theorem 5.4.8 in [58:pg 145]. See also [31:pg 252].

Theorem 46 Let {A(t)}t[T] be a stable family of infinitesimal generators of Co semigroups

on X. If D(A(t)) = D is independent oft and for v E D, A(t)v is Lipschitz continuous in

X then there exists a unique evolution system U(t, s), 0 < s < t < T, satisfying the five re-

sults of Theorem 44 where Y is the set D equipped with the norm jIvjy = IlvIjx +IIA(o)vllx.

Proof: See [58:pp 145-146]. Also see Appendix D which elaborates on one portion of the

proof cited. 01

It may be noted that Theorem 46 made no mention of condition 2+. The hypotheses

of Theorem 46 are such that Q(t) = I + A(t) is an acceptable choice. Thus, whenever

Theorem 46 applies, the re is no need to explicitly identify the isomorphism Q. In the

following application, the choice Q = I - (-AS) = I + As will be appropriate.

3.2.5 An application of Theorem 46 to the case of nonautonomous damping

The hypotheses of Theorem 46 are satisfied for the problem represented by (71) and

(72). Theorem 46 is to be applied to -A 5 . The satisfaction of the hypotheses will be

considered in some detail. Note that D(As) = D(A3).

Let Y be the same set of points as D(As) but with the graph norm of As(0)

IIlly = Ilyllx + IIAs(0)yllx. (89)

Lemma 47 The linear space Y is a Banach space under 11 IIy.

Proof: Since it is easy to see that Y is a normed linear space, all but completeniess is

clear. Let {yj} be a Cauchy sequence in Y. It is immediate that {y,,} and {As(O)yn} are

Cauchy sequences in X. Hence, there exist y, E X such that yn - y and As(O)yn -+.

Since -A 5 (0) is the generator of a Co semigroup of contractions (as shown in the case

of 0 a constant) it follows that As(0) is a closed operator (see Theorem 36). (The closedness
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of -As(0), as an operator in X, was established in showing that it is the generator of a

Co semigroup.) From the closedness of As(0) it follows that y E D(As), and hence y E Y.

Thus Y is complete. 0

For each t E [0: T] it is clear that -As(t) is the generator of a Co semigroup of

contractions (from the case for constant 9). Hence, by Lemma 37, the family is stable as

required. The domain has no time dependence as is easily seen from its definition.

Finally, it is necessary to verify the Lipschitz continuity of A5 with respect to t. Let

V E D be given. First consider a straightforward approach to continuity. Let e > 0 be

given. Identify 6 > 0 such that

Ih - t2 1< 6 = IIAs(t)v - As( 2)vIIx < E. (90)

From the definitions

IIA5(tl)v - As(t 2)vIIx = 0 0
0 (h(t) - P(t2 ))D 4  V2

= 0)( (f(tl) - f3(t2))D4 V2 )

=I P~h) - fl(i 2) I (j1(D4 2) 2 (91)

Now, V2 E H4 and 93 E C0 makes clear the existence of suitable 6 > 0. Specifically,

V2 E H4 - 3M such that 11V211H4 <5 M. Also, continuity of P6 guarantees that there is

some 6 such that

I t1 - t2 1< 6 #1 P6(t) - P(t2) j< C/M.- (92)

This is the required o.
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In fact, whatever smoothness P3 has will carry over to As(t)v. For example, to identify

d As(t)v, consider

As(t + h)v - As(t)v r(100 (lY
h-oh h-to h 0 (p(t + h) -P(t))D4  v2

h-0o (P(t + h) - fl(t))D~v2

0)
h-.O i+- t D4v2

0= (93)

Since 1P' is continuous and D 4v 2 does not depend on t it is now clear that As(t)v is contin-

uously differentiable with respect to t for t E [0, T]. Thus, in this particular application, a

stronger condition than Lipschitz continuity is satisfied.

This completes the verification of hypotheses for the application of Theorem 46 to

(71).

A brief review of what is known about solving (71), as a result of satisfying the

hypotheses of Theorem 46, is appropriate.

1. Theorem 46 guarantees the existence of U(t, s) satisfying the five results of Theo-

rem 44.

2. Corollary 45 says the problem has a unique Y-valued solution.

3. Theorem 41 says U(t, 0)uO is the unique Y-valued solution of the equation.

4. Theorem 39 (proof) describes the construction of a sequence {U,} whose limit is U.

Since U(t, s) is bounded, the continuous dependence on the initial condition vector

follows as in Theorem 31.
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S.3 Combined t, x dependence in the damping coefficient

Consider utt + D2(/(t, x)D 2ut) + D4u = 0. Require the constant a > 0 and

i3(t,x) _> 0 as before. Furthermore, require Pl and V to be twice continuously differ-

entiable with respect to x, and continuously differentiable with respect to t. The problem

can be formulated as a system as in (71) with

A 6 = . (94)aD4 D 2(p(t, .)D2)

Note that D(A 6) = D(A3).

It is not difficult to see that the hypotheses of Theorem 46 are again satisfied. Indeed,

for each t, -A 6 generates a Co semigroup of contractions as in the /3(x) case. Hence, the

family {-A6(t)}tE[O,T) is stable. Furthermore, note that D(-A 6) does not depend on t.

Also, -A 6(t, ') E C1 as long as P3 is appropriately smooth, as is required. Some detail is

appropriate for this last point.

The computation which parallels (91) is now presented.

( D ((tx)- (t 2 , )D 2  2)
) (1 [ ( x

00
D 2 [ ([ 1(t, X) - /(t 2 , x)]D 22

(1' [D2\] 2 d 12

+ [P~i, X) - P~/(t2 ,) Dy2 )] x

-(J1 [D([(t, X) /(t 2, x)D3V2

+2 ( x )(tl,x)- '9--(t 2 ,x)) D3v2
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2 2 2 1/2

_ 3 -2 (j1 [@X) - 1,, 3(t 2,X)) (D V2)2

/2 (P(, x) - P(th,x)) (D )V2)2

+4 ( i')-i( 2 X))) ( 3 v)21 x /

<+ 31/2 tlj ~, X) - fi(i, x) 2 (D V2)I dx)/

+2 I(J [ (P(ti,x) -P( ,x)) (D 2)2 dx) 1/2

+ r2 (PX\~,X) 22 1/2](5

+(I0 La-X2 (iix- (tx)](D v) 2 dx)] (95

The key to continue is that e is twice continuously differentiable with respect to x on a

closed and bounded set. Thus, there exists some Mp such that

sup (OP < MP
(t,)[,T]x[o,1] M

f ( 1,X)-1( 2 ,Tx0 T Tx Me1 - 2

a(a (a

- ~3(t2,x)))
ssup

sup ~ f <5 MO. (96)

(t,X)Ezj)[,1To[0,1

Then,

( 1 , X) - P(t2,)) < M,8t - 21(

O(P(t, X)_- P(2, X)) = - '9P(h, X)
< sup (a / a ) i€. - t2i

-(t,X)E[o,Trlx[o,1l \0t

<Mplh - t,2.l

,92
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Then, to continue,

IIA6(ti)'V - AG(t2)VIIX 5 3 1/2 [I'i3Iti - t2i (j' (D 4V2 ) 2  1/

+2M 0 Itl - t2i (J' (D 3V2 )
2 dx)1/

+MjI- t2l (J1 (D 2 2) 2 dx)/]

< 3'I2Molti - t2 ' '(11 (D 4v2 )2 dx ) 1/12

+2 (f 1(D 3V2 ) 2 dx) 12+ ( D (2 V2) 2 dx)]/ (98)

From this point the argument which follows (91) applies as before.

The computation which parallels equation (93) is presented next.

imA6(t + h, x)v - A6(t, X) 1 .(.(

h-oo h D 2 ((t + h, x) -P(t, x)) D2 v2

-D
2 (#t + h , ) ti (t)) 2V)

( 2 (D 2v2) (99)

Continuity with respect to t follows from an inequality similar to (98).

Thus, Theorem 46 applies to give the evolution system in terms of which a solution

to the problem is given as described in the f0(t) case.
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3,4 A more general theorem

The most general theorem used in this work is Theorem 48. It is a specialized

combination of Theorem 3.1 of [35:pp 169-170] and The. rem 1 of [24:pp 275-276]. The

proof is patterned after their proofs.

The problem of interest is

ut + A(t, u(t))u = 0; u(0) = uo. (100)

The theorem identifies sufficient conditions to guarantee the existence of a unique solution.

Numerous hypotheses are required to describe the setting. They are presented first. The

proof will be presented immediately afterward.

Throughout the remainder of this chapter, the following hypotheses will be assumed.

1. Let X be a real, reflexive, separable, Banach space with norm I1' lix. Let Y be a

subset of X which, when endowed with an appropriate norm, I1" Ily, is itself a real,

reflexive, separable, Banach space. Let I11 Ily - 1" IIx.

2. Let W be an open set in Y.

3. Let Q(t,w) be a collection of isomorphisms of Y onto X for (t,w) E [0,T] x W.

Assume T > 0.

4. There are real constants AQ, Q, and yQ such that IIQ(t,w)lY-.X < AQ,

IjQ(t,w)-lllx-y < 5 Q. and IiQ(t,w) - Q(t,tb)IIy-x < p.q(I t - I +1w - fVI[x)

for arbitrary (t,w), (i,t1) E [0,T] x W.

5. Let N(X) be the collection of all norms on X, equivalent to the given one, I11 IIx.
That is, N(X) = {II11, : 11 .11 is equivalent to 11 IIx, where A comes from some

index set}. Let a metric (this will be validated shortly) for N(X) be given by

d(ll . 1,,, 1" U1.) = log sup max -IYI IllI. 1 (101)
0 x IllIL' f

6. Let N(t,w) : [0,T] x W -* N(X) be a function satisfying d(N(t,w),1 llx) <
AN, d(N(t, w), N(i, f)) IN(I t- I1 +llw - tivlx) for fixed nonnegative AN, fZN
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E R and arbitrary (t, w), (, tb) E [0, T] x W. Let XN(t, ,) denote the space X with

the norm N(t, w).

7. Let {A(t, w) : (t, w) E t E [0, T] x W} be a family of operators, A(t, w) E B(Y, X).

There are real positive constants AA a i AA such that for each (t, w) E [0, T] x W,

the following hold:

A(t, o) E G(XN(t,,), 1, 0)

jjA(t,w )jjy-x < -AA

IIA(t, w) - A(!, f')lly-.x < AA (It -- il + 11w - 'lx)

8. Q(t,w)A(t,w)Q(t, w)-1 = A(t,w) for each (t,w) E [0, T] x W.

Theorem 48 When the above eight hypotheses are satisfied, the following conclusion holds:

For each u(O) = uo E W, there is some t > 0 and a unique solution u to ut+A(t, u(t))u = 0

with u(O) = uo such that u E C([0,fl; W))n C([0,Tf];X).

The metric in Hypothesis 5 appears in [24:pg 275].

3.5 Lemmas for use in the proof of Theorem 48

The proof requires several technical results. It will be useful to begin with an overview

of the, 'eas involved.

The solution which is to be obtained will be Y-valued. This means that only points

in Y will be considered for values of u(t). A candidate solution can be thought of as a

curve in the space Y with initial point u0 . There is no guarantee that solutions can be

propagated for long periods of time. Hence, consideration is given to candidate solutions

which are supposed to be valid until some time denoted 2' which is not yet specified.

The proof then is roughly outlined in the following steps. First, a set E is formed

which contains tb- -'kdidate solutions. Elements of E are curves in Y with initial point

uO. It will be established that the chosen set is a complete metric space under an appro-

priate metric. Second, it is shown for each fixed v E E, that the family {A(t,v(i))}
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has an associated evolution system (which generates a solution to the linear prrblem

ut + A(t, v(t))u = 0). Third, it is shown that the solution to the linear problem is, in

fact, in E. Also, the mapping from E to E thus established is a contraction mapping.

Then its fixed point is the desired solution.

There are many details between this outline and the completion of the proof. They

will be presented now.

3.5.1 Preliminary lemmas

Lemma 49 The pioposed metric for N(X) in Hypothesis 5 is valid.

Proof: Validation is straightforward from the definition, eg [54:pg 45], [66:pg 27], or [73:pg

4]. In particular, if 11 -l , = I1 Il, then it is clear that d(II 1,, 11" II,) = 0 since logl = 0.

Also, since 1 or its reciprocal will always be greater than or equal to one, it is clear

from the properties of the log function that d(lI l II, II I ) - 0. Similarly, if I 7i4 # I' I1,
then d(lIl IIl, II" ll ) > 0. Symmetry is obvious. The triangle inequality is a little tedious

but straightforward. The details follow.

d(Il l"i, I1" Il,) + d(lIlI1, Ii" Ilo) = log sup max RLL*L
OOYEY Jlyll/

+log sup w x{11LL'1k lYl}0o4YEY Ilyllo Ilyll.

= log (sup max llyll'. IlyllI sup max {lyll. Illlol'
oI Ilyl,"' msuLp) ma o ,

log sup max L, max

oOYE \. t Iyll IlyllU h- o'llyll,

log sup Ilyll lyll' Ilyll !lyll. il. Ilyllo Ilyll.. Ilyll
o#YEY ma\ [ Hlo , ' l Jlylllyll lyll 4

> log sup ma lyll., IyIlYl
>log Suip max '"iYI"o lIY"

lo Slip max [Ilyllt, IlyllI

= d(Il •11, I 1.11" ) - (102)
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For use in the proof, a collection of possible solutions is formulated as a metric space.

None of the candidates is allowed to go too far from the initial condition vector.

Let uo E W be given with M = Iluolly. Choose A > 0 with A < oo, such that

< dist(uo,Y\W). (The symbol '\' is used for set subtraction.) It is advantageous in

applications to choose k as large as possible within the bounds indicated. The set Y\W is

nonempty since 14 is an open, proper subset of Y.

Definition 50 Let .E be the set of all functions v : [0,T] -.- Y such that for each t,i E

[0,T], IIv(t) - uolly _ k, and Ilv(t) - v(t11x _ Lit - i1 where L = 2AA(R + M)QAQe\N

and the value of T is not yet specified.

The purpose of these requirements is to keep v(t) in W. The value of A has already

been chosen. The choice of tI is constrained by (148) and the discussion in the proof of

Lemma 60. These are constraints which guarantee that a certain mapping, to be developed

in the proof of the theorem, is a contraction mapping. Details concerning the choice of t

will be provided after the mapping has been presented. But first, there are several more

preliminaries.

Define a distance function for pairs of elements in E as follows. For v, w E E

d(v, w) = sup Ilv(t) - w(t)llx. (103)
o<t<

Lemma 51 The set E with the distance function d is a metric space.

Proof: The verification that this is a legitimate metric is completely straightforward. It

is easy to see that d(v, v) = 0. On the other hand, suppose d(v, w) = 0. Tn1en for each

t E [0,7], IIv(t) - w(t)llx = 0. Since 11 ix is a norm, it follows that v(t) = w(t) for each

I -Inh Thn+ ;c o - on When t -A w) fherea icz cnmn 1 cir t'hnt dll 4 indt) Thion
L-I- 1 - - / - -- - - - - -I - 1- - V ~ V /*

d(v, w) _ sup IIv() - w(t)llx

tE[,11

> Iv(M) - w(i)Ilx

> 0 (104)
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since I1" lix is a norm. Symmetry is obvious. The triangle inequality is the only remaining

issue. Let u, v, w E E be given. Then

d(u,w) - sup 1lu(t) - w(t)llx
tE[O,71

= sup IIu(t) - v(t) + v(t) - w(t)Iix
tE[0,21

_< sup Iu(t) - v(t)llx + sup Iv(t) - w(t)llx
tE[o,11 tE[o,11

= d(u,v)+d(v,w). (105)

Thus, E is a metric space. 0

It will be important for E to be a complete metric space.

Lemma 52 The set E, with the metric defined in (103), is a complete metric space.

Proof: Let {v,} be a Cauchy sequence in E. Then for each t, {vn(t)} is a Cauchy sequence

in X as is easily seen by examination of the metric on E. Since X is a complete space,

there is some 0(t) E X such that vn(t) -4 0(t) in the X norm. It is easy to s2e that 0 is

unique. It is not at all clear whether 0 lies in Y or is an element of E. These issues are

addressed next.

According to a standard theorem, (eg Theorem 7.70 of [20:pg 204]), {v(t)} treated

as a sequence in Y has a weakly convergent subsequence, say {z,(t)}. Then, (see Theorem

7.65 of [20:pg 202]) there is some v E Y such that z, --+ v. If v = then no other

subsequence could converge to any other point. But this is easily shown. Note that

-z * v in the X norm. Thvs lIv(t) - 0(t)llx = 0. This mea is that v = 0 pointwise. Thus

v is thv only weak limit of {v,}.

If v satisfies the two r. ments on elements of E, then the argument for complete-

ness will be finislie. But,

lIv(t) - , = Iv(t) - v"(t) + v"(t) - ,011Y

< llv(t)- v-(t)lly + IIv-(t)- Uvolly

< c+A (106)
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for any e > 0 when n is sufficiently large. Thus the first requirement is satisfied. Further-

more,

Iv(t) - Vn(t)Ijx + 11 Vn(t) - Vn(i)I11X + IIvn(t) - V(t)IJX
c/2 + Lit - iI + E/2 (107)

for any c > 0. Thus the second requirement is satisfied.

This completes the argument for the completeness of the metric space E. 0

3.5.2 Preparing for an evolution system

The proof of the theorem will require the solution of a sequence of linear equations.

For each linear equation a solution is obtained from Theorem 46. In this subsection the

linear equations are introduced and it is verified that they satisfy the hypothesis of Theorem

46.

Some convenient notation is now introduced. For each v E E, let Nv(t) = N(t, v(t)) =

[1" lit, Qv(t) = Q(t, v(t)), and AV(t) = A(t, v(t)). Throughout the remainder of Section 3.5,

v will always represent an element of E.

Consider now, for fixed v, the (still) nonaatonomous (but now) linear problem

du
du + A(i)u = 0; 0 < t < t; u(0) = uo. (108)
dt

Thc next major step is to establish the existence of an evolution system which solves

this linear problem. The lemmas which follow are necessary to establish the hypotheses of

a Theorem 46.

Lemma 53 The family {AV(t)} C G(XN(t,,(t)), 1,0) is stable with stability constants Mux =

e\N+2pN(1+L)!,, and w = 0.

Proof: It is important to bound for the given v and arbitrary t,i E [0, t]. First,

consider that Hypothesis 6 and the second property of E reveal a bound for the distance
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between the two norms.

d(II le, I1" 1k) - 1LN(I t - I +jlv(t) - v(t)IIx)

< [N(It-ti+LIt-i)

= I-IN(1+L)It-il (109)

From the definition of the distance function on the collection of norms (see Hypothesis

5) it follows that

log sup max ) - N(1 + ) -
0,X [ ' Ilyll J -

so that R&t < sup max Lh, lk
Ilyl OYEXlk IlyllJ

< e(11 + L) It- '1 (110)

and the desired bound is e&N( I +L)It -
fI

.

A method from the proof of Proposition 3.4 of [31:pg 245] is used in the next step.

From the definition of a stable family (Definition 35) and the equivalence of norms, write

k + A)-1 y < euN(1+L)(ti)e (A,( _) A)'. Yj=1 1'=17t1

kk--

< etLN( +L)tik)! H7 (Av(t 1 ) + A) 1
,

j=1 tk

3=1-k-

/lk

li) e"(l+L)(TJ-tk)eA'N(l+L)(tk-tj,-j)""d'+L)tll°

< (1)k eAN(1+L)0'IIyIo
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Clearly this bound holds for any of the norms. Note also that A = 1 is a valid choice in

the current setting.

This yields stability of the family {AV(t)} with stability constant M = e21IN(1+L)!f for

any Xt, meaning the set X with any one of the norms N(t, v(t)). It remains to translate

this to the original norm on X. But, from Hypotheses 5 and 6, it is easy to establish

that I1 Ilx - eANI l " lit. Namely, from the definition in Hypothesis 5 and the bound in

Hypothesis 6 it follows that

log sup max t lx } - d(II lit, 1 I lix)054YX Ilylx' Ilyllt = d l'h l lx

< AN. (112)

Then ll llt IM IX < '
sup max <e (113)

oYEX I lylx' Iyl -

Now it is clear that MU _< eN and hence Ilylix < eANllyll for any nonzero y E X. Then

{A'(t)) is a stable family in X with stability constant Mux = eANM = e)\v+2AN(1+L)t as

desired. 0

Lemma 54 For each v E E, the mapping t -+ A (t) E B(Y, X) is Lipschitz continuous.

Proof: The proof, which is straightforward, is outlined. Let i, t E [0, f], v E E be given.

Then

IIAv(t) - Av(i)lly-.x = IIA(t, v(t)) - A(i, v(t))Illy.x

< AA (It- il + Lit- fl)

< ILA (1 + L)It-i. o (114)

Lemma 55 For each t E [0, t], v E E, the bound IlQv(t)lly-.x < AQ holds.
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3.5.3 The evolution system

The hypotheses of Theorem 46 are now satisfied and the theorem gives an evolution

operator UI(t, s). This is a good time to review how the proof all fits together. Based

on the previous discussion, an evolution operator can be obtained corresponding to uo. If

the image of elements of W, under the action of the operator UuO, is again in E, then

an iterative procedure is justified. This subsection consists of preliminaries necessary to

establish that such images are, in fact, again in E.

Now that the evolution operator has been identified, it will be useful to identify

bounds for it. This will require attention to a portion of the proof of Theorem 44. Bounds

are desired for IIUvIIx and IIUvIlY.

Lemma 58 For each v E E, IIUvIlx < e \ N +2AN(1+L)T .

Proof: The bound for IIUvIlx is immediate from Lemma 53 and property 1 of Theorem

44. In particular, property 1 of Theorem 44 says that IIU(t,s)llx < Muxew(t-' ). Lemma

53 says w = 0 and Mux has the value indicated. 0

A bound for JJUvJJy is not as simple to obtain. The bound, which is established in

the next lemma, will be denoted by Muy.

Lemma 59 For each v E E,

JJUvlJy <_ QAQexp [(AN + 2/iN(1 + )T) + IQ(1 + L)AQje(Av+2AN(1+L)T)]. (118)

Proof: The strategy is to define an intermediate operator Vv such that Uv = (Qv)-lVVQV.

Notice that while Uv : Y --+ Y in this equation, the isomorphism QV allows VV to be a

mapping from X to X. A bound on IIViJlx can then be multiplied by AQAQ to give a

bound for IU"'ly.

Let Cv(t) = Qv(t)(Qv(t)) -1 where Qv(t) is the same as discussed in conjunction with

Theorem 44 with the choice Q = I + A. The intermediate operator V v will be defined

in terms of Uv : X --+ X. The operator V v , here, is given by the V of Lemma 43. From
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Proof: This simply requires a careful look at the hypotheses. Let t E [0, T], v E E be

given. Then

IIQ'(t)lly-x =-IIO(t,v(0)llY-.x

< Ac (115)

where the inequality holds, for each t, by Hypothesis 4. Hence, since the bound is uniform,

it also holds for the supremum over all t. 0

The case for IlQv(t)"'-Ix[..y kQ is similar.

Lemma 56 The bound IIQv(t) - Q"(t)llyx -< yQ(1 + t) I t - i 1, holds for I,t E [0,T

and each v E E.

Proof: The proof is a straightforward application of Hypothesis 4 and the definition of E.

IIQ(t) - QV(IIy-x = IIQ(t, v(t)) - Q(, V()IIY-x
__ 1-Q( t - I +llV(t) -V(01)IX

< PQ(l t- I + I t-i 1)

= 1-Q(1-+ L) It - . 0 (116)

Lemma 57 For each t E [0,]tj and v E E, Qv(t)Av(t)Qv(t)-l = Av(t).

Proof: This is almost immediate from Hypothesis 8, which holds for each t.

QV(t)Av(t)Q(t) - l = Q(t,v(t))A(t,v(t))Q(t,v(t))- 1

= A(t,v(t))

= Av(t). 0 (117)

This completes the preliminaries necessary to obtain an evolution system corresponding

to the linear equation 108.
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3.5.3 The evolution system

The hypotheses of Theorem 46 are now satisfied and the theorem gives an evolution

operator Uv(t,s). This is a good time to review how the proof all fits together. Based

on the previous discussion, an evolution operator can be obtained corresponding to uo. If

the image of elements of W, under the action of the operator Uu', is again in E, then

an iterative procedure is justified. This subsection consists of preliminaries necessary to

establish that such images are, in fact, again in E.

Now that the evolution operator has been identified, it will be useful to identify

bounds for it. This will require attention to a portion of the proof of Theorem 44. Bounds

are desired for IIUvJIx and IIUVI]y.

Lemma 58 For each v E E, IlUvJ]x < eN+2plq(i+L)I'

Proof: The bound for 11W'lUx is immediate from Lemma 53 and property 1 of Theorem

44. In particular, property 1 of Theorem 44 says that IlUV(t,s)llx Muxe(t - ). Lemma

53 says w = 0 and Mux has the value indicated. 0

A bound for IIuJJvy is not as simple to obtain. The bound, which is established in

the next lemma, will be denoted by MUy.

Lemma 59 For each v E E,

Uvly _ AQAQexp [(AN + 21LN(1 + L)T) + ,Q(1 + L)AQTe(A N+2AN(i+L)T)]. (118)

Proof: The strategy is to define an iatermediate operator V' such that Uv = (QV)-lVVQV.

Notice that while Uv : Y -- Y in this equation, the isomorphism Q1 allows V" to be a

mapping from X to X. A bound on IIV'"Ix can then be multiplied by AQAQ to give a

bound for IIU'Ily.

Let Cv(t) = Qv(t)(QV(t))-l where Qv(t) is the same as discussed in conjunction with

Theorem 44 with the choice Q = I + A. The intermediate operator V v will be defined

in terms of Uv : X -* X. The operator V v , here, is given by the V of Lemma 43. From
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Lemma 43, if H(t) = C(t) = Q(t)(Q(t)) - ', then for any x E X, VI is the unique solution

of the integral equation

t
VV(t, s)X = UV(t, S)X + j Vv(i, r)C(r)Uv(r, s)x dr. (119)

It is shown in the proof of Theorem 44 that Vv, defined in this way, satisfies Uv =

(Qv)-1VvQv. For completeness, the relevant details are presented. (For convenience in

writing, the superscripts 'v' will be omitted.)

From the boundedness of Q-1 and the differentiability of Q it follows that Q- 1 is

differentiable a.e.. Note that

dd (Q(t)-'x) = -Q(t)-Q(t)Q(t)-'x. (120)

As a temporary notational convenience, let F(t, r) = U(t, r)Q(r)- 1. Then

F(t,r) = -- U(t,r)Q(r)-'x +U(t,r)dQ(r)-x

= -U(t, r)A(r)Q(r)-x - U(t, r)Q(r)-lQ(r)Q(r)-'x

= - (F(t, r)A(r) + F(t, r)Q(r)Q(r)-) x (121)

where the last step uses the commutativity of an operator and its resolvent. Let Un(t, r)

U(t, r) so that for any y E Y

-U,,(r, s)y = An(r)Un(r, s)y. (122)

Now,

-U(t,r)Q(r)-'Un(r, s)y = - F(t, r)Un(r, s)y

= -F(t, r) (A(r) + Q(r)Q(r) - ') U(r, s)y

+ F(t, r)A,,(r)U.,(r, s)y

= -F(t,r) (A(r) + Q(r)Q(r)-' - An(r)) U,(r, s)y(123)
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The next step is to integrate the last expression from s to t with respect to r. This will be

displayed.

U(t,r)Q(r)-'U,(r,s)yj = - t F(t,r) (A(r)+ (r)Q(r)-' - A(r))U,(rs)ydr

Q(t)- U-(t, s)y-U(tS)Q(S) 1Y = - J U(t,r)Q(r)-l(r)Q(r)-'U,,(r,s)ydr

+L U(r,t)Q(r)-(An(r)-A(r))Ur(r,s)ydr (124)

Note that the second integral vanishes in the limit. Then, from the denseness of Y in X,

it follows that

- Q(t)-'U(ts)x + U(tS)Q(s)-'x = U(t,r)Q(r)-1 (r)Q(r)-U(r, s)x dr (125)

or

U(t,'s)Q()-'x = Q(t)-'U(tS)X + j U(t, r)Q(r)-1Q(r)Q(r)-1U(r,s)xdr. (126)

It is useful to compare this to the form of (119). Specifically, apply Q-(t) to the left side

of each operator in (119). Then it becomes

Q-l(t)V(ts)x = Q- (t)U(ts)x + f Q-'k)V(t, r)C(r)U(r, s)x dr. (127)

It is now clear that Q-1(t)V(t,s)x, and U(t,s)Q(s)-1x are each solutions to the same

integral equation, which is known to have a unique solution. Hence

v = Q-1VQ (128)

as desired.

A construction of V is now gi. The purpose of this construction is to obtain a

bound on IIVIjx. Let

V()(t,r)x = U(t,r)x (129)
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It is easy to see that

IIV(o)IIX MUX. (130)

Next,

V(l)(t, r)x = jtV(o)(t,.s)C(s)U(s, r)z ds

= jtV(O)(t, s)C~s) V(O)(s, r)x ds

II1()(t, r)xIIx= 1ItV(O)(t, s)C(s)V(O)(s, r)x ds
r lix

< I I(O)@t, s)C(s) V(O)(s, r)x lix ds

j IV(o)(,8s)lIxIIC(s)V(o)(s,r)xIx ds

< MuX) It IICo~l / IV(o)(s, r)xllxIx ds

Mux IIC11 I o )(s jds xlxlx

< MUX21IClI.11IXI(t - r)

Mux2 11II!Imlxt (131)

Define

V(k+l) (t, r)x = ft V(k) (t, .s)C(s)V(O)(s, r)x ds. (132)

Suppose now, for the purpose of proof by induction, that

IltT 14* .AII Ax.. k+l i ri-q k (t - r)k
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The next step is to show that (133) holds for V(k+l). Then,

IIV(k+l)(t, rOXIIX= V(t, s)C(S) V(O)(S, r)x ds

" MUXk+21ICllIlxlx (k + 1)!

< Muxk+ 211Clk1llXIIx(k+ 1)! (134)

The operator V obtained by the construction is

V(t, S) = X Vck)(t, s). (135)
k=O

It is appropriate to verify that this expression for V agrees with (119) of Lemma 43. The

issue is whether V satisfies (19) since (119) is known to have a unique solution. So,

consider
0C 00'/ V'[k)(t, S)X = zEVk) (t, ')C(,r)Vco)(, ,) d," (136)

k=1 k=0

where the k = 3 term from the left hand side has cancelled with the first term on the right

hand side of (119). Consider the first remaining summand on each side. By definition,

V()(t, S)X = j V(o)(t, r)C(r)V(o)(r, s)x dr. (137)

Likewise, for each succeeding pair of terms, the summand on the left equals the summand

on the right. Hence, the sums are the same.

A bound-for V is available in terms of the bounds on the V(k). Namely,

o

IIVlx < E3 IV(k) Ix
k=0

_< E Muxk+IC1k T
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<_ Mux eMux IIII0' (138)

where the standard series representation for e is easily recognized.

Everything is in place to bound IlU[ly. The superscripts will now be used again.

JIUV"Iy = II(Q)-lvQVIly
< l{(QV)-Illx-Y llVVllx ll'llY-X

< QAQllVlx
< AQAQMUX eMUx IlC'{ Ii- (139)

Recall that Cv = V(QUr)l.

The final expression can be made more explicit in terms of fundamental quantities.

llCv(t)ll = ess sup llQv(t)Qv(t)-1lx
tE[0,1

< ess sup IIQV()IIY-x IIQV(t-lIlx-y
tEtO,11

< ess sup ILQ(1 + L)AQ

- (I + !),Q (140)

The combination of estimates (139) and (140) gives

IIUViIY _< AQAQexp [(AN + 2!IN(1 + L)T) + IiQ(1 + L)QtC(N2L+L))] (141)

The bound given by the right hand side of this equation will be denoted by Muy. This

concludes the proof of the lemma. 0

Th,% hnir,4 on thb Pvnh tlon onpprators arp nbtained a;vd thP preliminaries for es-

tablishing a contraction mapping are complete. Note that the linear problem (108) is all

that has been solved at this point. But, as it turns out, the solution is in E and a mapping

from E -, E is established. Thenit will be established that the mapping is a contraction.

The fixed point of the contraction map is the desired solution.

"70



3.5.4 A contraction mapping

Attention now returns to the solution of (108) in terms of Uv(t, s). In particular,

U'(t) = Uw(tO)UO. (142)

So, uv(t) is a continuous mapping of [0, T] into Y by properties 4 and 5 of Theorem 44. By

property 2 it is differentiable for small t. Also, from the definition of a Y-valued solution,

it is continuously differentiable into X.

It is desirable to establish that u' E E. This is the point in the argument where the

choices of L and T occur. The conditions that uv must satisfy are:

IIUV(t) - UollY < j (143)

IIUV(t) - Uv(6i1x -< .it - fI. (144)

It will now be shown that suitable choices are available to make this so.

Lemma 60 For each v E E and t E [0,T], uv(t) E E.

Proof: Consider the inequality (144) first. Note that duv(t) = -AV(t)uv(t). Recall that

dd
M = 1o[[y and R is the radius of a ball centered at uo. Then,

I~v~)- v~)~x sup d uv(i) It - i

- 11- Av(t)uv(t)llxlt - I

< IIA"(t)lly-x jilu(t)llyIt - {I

< AAIIUV(t,0)uollYIt- I

< AAIIUVIIY IIUolIYIt - I

< AA( R + M)IIUvIIy It - ij

< AA(R + M)AQAQexp [(AN + 21N(1 +L)T)

+I)Q(1 + L)AQTeN+2N(1+L)T] It - ii. (145)
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The goal is to have this quantity less than or equal to Il I -I. But,

L = 2AA(R + M)5QAQe\N. (146)

Clearly T can be chosen small enough for the condition to be satisfied.

The inequality (143) is satisfied for some T > 0 ince u'(0) = u0 and u is continuous,

hence u" E E. 0

Thus, a mapping 4 : E -+ E is identified. In particular, for any v e E, i1(v) is

obtained by the following steps:

1. Obtain an evolution operator UV(t, s) for the problem du + Av(t)u = 0.

2. Let uv(t) = U'(t, 0)u0.

3. (v) = uV.

The next item to establish is that 4 is in fact a contraction map. This will require

a prelim;nary lemma.

Lemma 61 r -t U and V be evolution operators corresponding to AU and AV respectively.

Then t
V(t,,r)y- U(t) = j U(ts)(AU(s) - A(s))V(sr)yds. (147)

Proof: See Appendix D. 0

The lemma will now be used to establish that P is a contraction mapping.

Lemma 62 The map 4 : E -* E is a contraction.

Proof- The argument is straightforward. Let u1, v E F )e jiven. Let fi = 0u, = Pv.

d(i, ) = sup iji(t) - 0(t)I!x
o<t<t

= sup llUU(t,0)uo- UV(t,)'uollx
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= sup JUV(t, s)(A(s) - AV(s))UU(s, (J)uo ds
o<t< 0 x

<sup IIUv(ts)(A-(s)- AV(s))U(s,O)uollxdso<t<11

SUp MUI.xYAd(u,V)IIUoIIxt
0<t<T

MUx 2 ,Ad(u,v)IjuoIjxt (148)

where Mux is taken from Lemma 53.

It is now clear that t can be reduced if necessary to ensure that i is a contraction

mapping. 0

3.6 The proof of the theorem

The Contraction Mapping Theorem, eg [54:pg 126], [13:pg 1811, or [46:pp 40-42],

applies to give the desired soluti, and the theorem follows as outlined at the beginning

of Section 3.5. 0

3.7 Applicability of Theorem 48 to an a(t) case

Consider Uut + a(t)u.... = 0 with the abstract formulation ut + A7 u = 0; u(0) = u0

where
A7 0 4-1 (149

a(t)D4 0A= K~t 0 (149)

As before, a(t) _ ani, > 0 for all t E [0, T]. Furthermore, require a(t) to be continuously

differentiable. Thus there is some amax, such that ce(t) < amax for all t E [0, T]. Similarly

there is some ciax such that a'(t) 5 a' xfor all t E [0,T]. For this equation, it has simply

been assumed that a could vary with t in a model originally derived for constant a.

Notice that, in this particular application, the operator does not have any deDendence

on the solution. Thus the full power of the theorem is not exercised. The formal presence

of w in A 7(t, w) will nevertheless be retained in the following exposition.

The space X is almost the same as before. The point set is unchanged from (30)

and (31). However, since the inner product on X uses the value of a in its definition, it
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would appear to have a variable norm. Though it wvill be useful to treat a family of noi Ils

corresp~onding to the various values of a this is not acceptable for the definition of tile

Banlach space X. Since a is a continuous function of t on a closed and bounded set, there

is some ti,, E [0,T] such tha~t a attains its absolute minimum, say a .. i,. The value a,,

replaces a in the definition of the inner product on X as given in Theorem 10. The space

Y is D(A 3) with the normi defined as follows. The norm onl Y is a graph norm which

dlepends onl the operator A. Since the operator is now allowed to vary with I and it it is

necessary to be careful so that the norm is well defined. To this end, choose A 1ntn5I U)

as the operator in the normn for Y"

IlyIly = IIyIjx + 11A7(tmin, 11o)YIIX.- (150)

The set 11 is a ball in Y with radius ft and center at the initial condition 71o. Other

symbols with the same meaning as before are MV = Iluolly. an(1 Q = I + .

It is easily seen that Hypotheses 1-3, 5, and 8 of Theorem 4IS are zatisfied fromi thle

samne arguments that were used in the proof of the theorem. For example. Ily pot hieis S

is satisfied since Q-1 is the resolvent of A and resolvents commute with their genciatois.

The other liypothescs must be addressed individually.

Consider Hypothesis 4. An upper bound on IIQ(t, w)ll)y-x is desired. Let values of

and u- be given. Note that iv does not have any role ini this p~articular appllication. Thlen.

IIQ(t,w tv).,v = 1(1 + .47(1, IV))Il'-.

sli SI1(1 + A 7 (t, w))yIIX

sli 1(1 + A 7(t, w))YIIX
oo,-,IlIIlx + 11A7(trnin, uo)?IIX

Sl) Ilulix + 11A-7(t, tV)YII.V
OOY~E1 IIyIjx + 11A7(tmnin , 1o)YIlx
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IIx + (-2 )
-OOYYII yx+ IIA7(tmi.,iu0)yIIx

- Ilyix + (aminJfo'(Y2 ")2 dx + a(t) 2 fJ, (D~y1)2 dx) 1,2 (1)

The remainder of the argument is carried out in two separate cases. First, suppose that

Cermin < 1. Then

IIQItYwIIIyX + C"sup ICyI'xt+ (Ce(m in foi y2 ) dx + a~t)2  fo' ( 2,) (D ~y,) 2  dx) 1 '1

096yEYIlylix + IIA7(tmin, UO)YIIX

IIyIix + ac() (t M f o (Y 2)2  dx + Ce i f o' (D~v ) dx)
=sup

O4yEY IlyIIx + IIA7(tminUO)YIIX

< Ilylix + It (crf( 2 ) dx + in f~l (D~y dx)'1

096yEYIIyIIx + 11A7(tmi., UO)YIIX

096YEY ~ 1A(tin uly IIx IA(m. OY

IIyIx + a- 11A7(tmin, UO)YIIX(12

< max(12
amin

For the second case, suppose amin > 1. Then

IIx + (RD) (aemin fol (Y22 dx + a( 2 0 (D~y) dx)" 2'
IIQQt,u)Ily~4x ' , su III 1A(mn096YY Iylix+ IA7(tinUO)YIIX

-YIIYIIx + a@t (2aWtL, fo' (Y2 ,) 2 dx + fol (D4V1)2 dx) 1/2

O~yEY Iyl~x +IIA7(tij, UO)YIIX -

<~Ce Illx ot ariJ (Y2 ")2 dx + c2~J ( 4 y) 2 dx) 11

su SU I~ + amax(in fo' (Y2'D)2 dx + a2j I~ (D~y,) 2  1/)'

OOsYE IlyIIx + IIA7(tmin, UO)yIIx
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< crma, J IYvIX + (amin fo (Y22 dx + cr0,f (D~y) dx)11

&max. Y IjvIjx + IIA7(tmi, , UO)YIIX(1)

Therefore, choose AQ = max{jO, amaz}

A lower bound on IIQ(t, w)Ijy--4x is useful to help identify an upper bound for

IIQ(t, w)-1 ix.y. Since -A 7 (t, W) is dissipative,

IIQ(t, w)yllx = ([I +A 7(t,W)]Y, [ + A7(t, W)]v)1/2

= ((y, y) + 2(y, A 7(t, W)Y) + (A7(t, w), A 7(t, W)))112

> (11yi12 +1/2(~~yR)
> '~(llX + 1A7(t, w)y1')X

> 2-1/2 (IIYIIx + IA(tmi j 2 + j
(/2 v + (min I' (y2")2 dx + at2 j1 (D y1 )2 dx) )

= 2-1/2 (1IIIx + IIA7(tm, W)JII)

= 2-1/2 (I1vIIX + 11A7(tmi., uo)I~X)

= 2-11211Y11Y. (154)

It follows from Theorem 5.7.1 [54:pg 244] that an acceptable choice is Ac2  21/

The next task is to calculate ,iQ.

IIQ(t, w) - iV)I1Y--X = sup 11(Q(t, W) - Q(i"t&)) v1X.

o y IY11Y

= su 110(, w)y - 0(, iZV)YI1x

11 (1+ A7 t, W)) Y - (I + A7(i, ?b)) vIIX
054yY Illy
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su 11A7(t, W)Y - A7(i, iV)YIIX

su .1 (A7(t, W) - A 7 (i, ?-V)) YI~x

=1 I( (ai-~)D 4

( (a(t) -ac4))Dy 0
O 6YEY IlvIly

Ice(t) - sup~ ( 4;Yi) x

O YEY IIYIIY

-~~~04E Iat-~i I yiiix + IIA7(tmi.,W)YIIX

- a(i) - cetlsup (D y) x.

Ic(t) -a(!)! Sup (D )j
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D4 Y1

I a - (i)l sup (

D4y1 ) X

amin (155= ea -mIt- i (155)
ain

So, choose uQ = a This completes the arguments to satisfy Hypothesis 5. Notice thata, n

in this application the isomorphism does not depend on w.

Consider Hypothesis 6. Let N(tw)y = (t) f0 (yl")2 dx + fo y22 dx. Then

d(N(t,w),IIlix) =log sup max{ llvl , luyLx }
= log sup max a(0)fcl(Yi")2 dx + f, Y22 dx amin fo(y) 2 dx + fy22 dx}

O#EXfj yi" 2 dx+ f y~ dxa(t) fl (yi",)2 1x +JY~2 2dx

" log sup 0{ t IoOYEX Crain

" logom .  (156)
4min

So, choose AN = 1og09,. It is easy to see that 11N = AN is suitable for the current

problem.

The next argument requires a preliminary lemma. The lemma is elementary but is

included to help clarify the argument.

Lemma 63 For positive real numbers a, b, and c with b > c, it follows that a+b < b
a+c - c'

Proof: See Appendix D. 0
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Consider Hypothesis 7. Claim: A 7(t, w) E G(XN(t,@), 1, 0). Recall that XN(t,w) is

simply the set X with the norm that uses a(t). For each (t, w) this reduces to the constant

coefficient case. In particular, for each fixed value of t, Lemmas 21 and 26 and Theorem

27 apply to A7(t, w) just as they did to A 1.

Claim: IIA7(t, w)IIy.x :_ AA. This is straightforward, as follows.

IIA7(t,W)lY-x = sup IIA7(t,)YIIX

SUP IIA7(t, W)Yllx
= supJIyI~x +A7(iW)YAJX

< 1A7(t,w)yIIxo~yEy IIA(t,.i, W)YIx

SU sup)'Y > -

=m supy

OspYEY -Y12d

SU (Cemin fo' (Yi2" )2 x+a (t) fo' (D 4, 1)2 dx) 1,
oi6CY (amin fJl (Y2") 2 dx + qmin fj (D4y,) 2 dX) 1 /2

(ciif 1 (y2,,) 2  d1 iraf (D 4y,) 2  dx)',
< sup 1/2

O yEY (c1m]n fj (Y) dx+ ami2nfj (D4 dx)

< ma (157)
Ctmin

Choose AA -mi=

It is suitable to choose IIA = IO' Continuity holds as argued in the P(t) case.

This completes the verification of hypotheses for this case. The theorem applies and

guarantees the existence of a unique solution.
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3.8 Chapter summary

A theorem for existence and uniqueness of solutions to a broad class of abstract

Cauchy problems has been presented, along with its proof. Also, an application has been

described, formulated, and shown to satisfy the hypotheses. The existence of a unique

solution is guaranteed.
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IV. A nonlinear damping term

Consider uit + D2(fi(u)D2ut) + aD 4u = 0. Formulate this as an abstract system as

before with

A = A(u)= ( 4  2  2 ) (158)( D4 D (P(u)D )

where, in the abstract system, u is a vector with components ul and u2. The space X and

D(A) are the same as described in the previous chapter.

It is convenient and informative to treat a specific case and demonstrate how the

conditions are verified.

Consider Utg + D2 ((po + 91u)D 2ut) + aD 4u = 0 where a, i9o, and P, are constants.

Formulate this as an abstract system as before with

As = A(u) 0 -1 ) (159)aD4 D2((#0 + Plu)D 2) )

and D(A8 ) = D(A 3). Certain restrictions will be placed on Po in terms of other constants

in the problem. Portions of the problem formulation which are different from before are

described next.

.4.1 Preparation for application of the existence theorem

Let Y be the set of points (pairs of functions) in D(As) endowed with the norm

Ilylly = IljyIx + 1ID4y1 IL2 + IID4Yv2lIl. (160)

Notice that D(A 8) does not depenid on '. T he linear space 1 is complete as shown before.

The graph norm has not been used this time. Use of the graph norm, according to the

previous pattern, would require W to be closed and bounded. The current strategy uses

the norm (160).
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Some earlier terminology is now reviewed. Let W = B(uo; R) be an open ball in

Y with center uo (the initial condition vector) and radius R (not yet specified). Let

M = IU011Y.

Several lemmas are now presented. They will be used to identify the restrictions on

flo and in other computations. The purpose of these lemmas is to identify bounds on Y2"

and Y2.. in terms of D4y2.

Lemma 64 For any c E [0, 1] and y2 E H 3 , 11Y2"jco - lY2"(c)I + IIy2"'IIz,..

Proof: This follows immediately from the same line of argument as in the proof of Lemma

12. El

Lemma 65 For any Y2 E H3 with y2'(O) = y2'(1) = 0 there is some c E [0,1], such that

Y /I(c) = 0.

Proof: Note the continuity of Y2 as an element of H 3 and the boundary conditions

Y2'(O) = y2'(1) = 0. The existence of the desired c E [0, 1], such that y2"(c) = 0 is

immediate from Rolle's Theorem. 0

It is useful to note that there are at least two such values, say cl and c2. This is

because an application of Rolle's Theorem to the continuous function Y2 and the boundary

conditions on Y2 gives a point E (0,1) such that y'(e) = 0. Then the argument of Lemma

65 can be applied to each of the intervals (0, ) and ( , 1).

Corollary 66 For Y2 E H 3 and satisfying the boundary conditions,

IlY"I"1 < 11V2 IIL2. (161)

Lemma 67 For any c E [0,1] and Y2 E H',

IlY2'11 < 1y2..(c)l + IID4Y211L 2
•  (162)

Proof: This follows immediately from the same line of argument as in the proof of Lemma

12. 0
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But, again by Rolle's theorem, there is some a E [C1, c2] such that y2"() = 0. Thus,

the following corollary is immediate.

Corollary 68 For Y2 E H' and satisfying the boundary conditions,

11Y2 ..I : lID4 y211L 2 . (163)

Lemma 69 For w E B(uo;R) = W, Iwj[ < (Av) where Al = Iluo[Iy and a is the

constant in (159) which is also used in the definition of 1. lix.

Proof: Since w E W, it is clear that I1wily < R + M. Recall that components of elements

of Y satisfy the boundary conditions in the specification of D(A). From the definitions it

is not difficult to see that

lw l < IlWlloo

1'iw"lL 2

20)
1111W1X

£ - / 7 llwllx

11I"H'
Al + R

co1/2 0 (164)

The restriction that Po will be required to satisfy is now given. It is required that,

for every x E [0, 1], 30 +/hwj _ 0 for all w E W. Since 1[wj[o, < this can be satisfied

with a finite choice for fio. Or, more to the point, it is desirable that 0 > -w,(x) for all

.T E [0, J]. Note that the choice of small values for R and Al will allow more flexibility in

Ihe choice of acceptable P30 and f3,.

.2 Applying Theorem 48
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Consider whether the nonlinear damping problem satisfies the hypotheses of Theorem

48. Hypotheses I and 2 are clearly satisfied. Hypothesis 3 is satisfied with Q = I + A as

before.

Bounds on Q and Q-1 for Hypothesis 4 may be obtained with some effort. In order

to obtain such bounds most easily, several elementary lemmas are presented.

Lemma 70 For a, b > 0, (a2 + b2)1/ 2 < a + b.

Proof: See Appendix D. 0

Lemma 7- For any real numbers a and b, (a + b)2 < 2(a 2 + b2).

Proof: See Appendix D. 0

Corollary 72 For positive real numbers a and b, 2-1/2(al/2 + b1/ 2) (a +-b)/ 2.

Lemma 73 For positive real numbers a, b, and c it holds that (a + b + c) 2 < 3(a 2 + b2 + c2).

Proof: See Appendix D. 0

Lemma 74 For any positive, real a, b, and c, it holds that (a+b+c)1/ 2 < (al/ 2+bl/ 2+C1/2).

Proof: See Appendix D. 0

Consider a bound for Q. Equation (40) will be used several times in the following

string of inequalities.

IIQ(w)ll-y x = III+ As(w)ll-.x

= sup 1(1+ A8(w))yIjx0 Y Ilylly

sup Ily + As(w)yllx
OOEY Ilyllx + IID'yllIL 2 + IID4Y211L 2
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sup ii + IIlIx -+ sup IIA8(w)yIlx
oOz~YYIy~ IID'ylIL2+ I1DIY21IL2 obyEy linux + llD'yviIL2~+ JID'Y2llL2

i+ su ii ii lA(W)YIIX
Oi4,EY Ilyl D + IylL 2 + lIDIY2lIL2

oi~y'y lID'ylIL2 + lID'Y21 IL2

+ sup (a fo (Y dx + fJl (cD'yi + IPoD'Y2 + /312 wID2Y)2dx)1/
OOYElDIDny IlL2 + lID'Y21IL 2

al/2 (fo' (2 ,) 2 dx) 1/ 2

+ sup~y lL 114 2 Il

ooyE11DID1yIlL22+ 1lD Y21IL2

1+ l+ (f (QDy + /3oD4  
2  + f31D2 ( w1D 2))2 dx) /

O OsE JDyiL 1D'll 2 + IDvIL

1 +a 1/2 + 212sup (f (cDy )D2 d+ Pf D2 (w3oD Y 2  d f 1 /2 (wDy) 2 d)

054El' 1I'yIl2+D4 1L2 1Dv2IL

S1+'/21/2 su (fo' (aDy)2 dx) 1 + (f (foD4 Y2 + /1D2 (wD2y2) )2 dx) /

1+a ~ ~ 2/ + 1/su

+ a/2 21"'a + 21/2 Sup 212 f0 (PoD V2) 2  dx + fo' (f 1D2 (wD2 Y2))
2 dx) 1/

Oj4YEYllD'yl JIL2 + 1lD4Y211L 2

+ a/2 + 21/20e + 2 sup IllIoD'Y21IlL2

OO~YE1 IID4y, JIL2 + llD4 Y2l1L 2

85



+2 sup (ID 2 (wID2Y2)) 2 dx)"12

o0YY 11D4yIlIL2 + lID'2IlL2
1, 1 ( (1DlD'Y2 + 2w 1D3y 2 + wi"D2Y2) 2 dx)1/2

= 1-l/ 2 +21/ 2 +I 2lpol + 2 sup
OEY IID'ylli + lID 4 I21lL 2

< 1+& 1/ 2 + 2/2 + 21Pol

31/21#11 (fl W1
2 (Dy 2)2 dx + 2 fl (w1 )2 (D3y2)2 dx +f (w 11)2 (D Y2)2  1)2

-1- sup2 x
oYEY I1D4 JIIL2 + IID' 2lII

< 1+a 1/2 + 21/2a + 21fol

+2.31/21/311 sup (R+ M) (fl (D4Y2)2 dx +2 f (D3Y2)2 dx + fo (D2Y 2)2 dx) 1 2

oj4E" IIDyly IL2 + IID'Y211L2

< 1 + a1/2 + 21/ae + 21ol

+2 -31/1p I/(R + M) sup IID4Y21I2 + 21ID3Y2 11 2 + 11DI 2Y211L 2

023YEY IID4y, II+ + IuDpv2jL 2

< 1 + a1/2 + 21/2a + 21Pol + 8. 321plI(R + M) (165)

So, choose AQ = 1 + al/2 + 2'/2ct + 21flol + 8.3 1/21p11(R + M).

Now that Q is bounded, recall that it is also linear, one-to-one, and onto. Then, by

a standard corollary (see [22:pg 47], or [73:pg 77]) of the Open Mapping Theorem, Q-1 is

also bounded, say by AQ.

A suitable choice for ji is /A which is determined in (168).

Hypotheses 5 and 6 are trivially satisfied since the variable norms are not used in

this application.

The first part of Hypothesis 7 is satisfied for each w E W as argued in the /3(x)

case. For clarity, the dissipative argument, which appears on the surface to be different, is
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presented. First, some notation is clarified.

As = ( 0-1

aD4 D2 ((3o + Pl)Du2)

AS()uD + D2 (( o + 1 U1)D )

"8") =U -u2

(As(w)u,u) = - 2 11 d+ j u2 D4ul dx + ju 2D2 ((go + flwi)D2U2) dx

= U2D ((gob + P31wl)D2 U2) 110 - 0j DU2D ((Po + 131w1)D2 U2) dx

= -Du 2 ((Po + fiwi)D 2 U2) 110 + jI D2 U2(PO + f31w1)D2 U2 dx

" o(fo + Piwi)(D2u 2)2 dx (166)
4o

where, in the line with three integrals, the first two cancel out after integration by parts.

Also, the boundary terms, arising from integrations by parts, are all zero. If it happens that

the quantity P0 + / 1wj is greater than or equal to zero for all x (which is required above)

then -As(w) is dissipative. The remainder of the argument to establish As(w) E G(X, 1, 0)

is the same as for the /3(x) case. This completes the discussion of the first part of Hypothesis

7.

For the second part of Hypothesis 7 note that, from the work for AQ leading to (165),

it follows that

AA = ai/2 + Ce /2a + 21pol + 83+ M) (167)
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is suitable.

Next, a suitable AA must be identified for the third part of Hypothesis 7. Notice that

in the current application there is no explicit time dependence in A8 . For the first inequal-

ity, in the following sequence of equalities and inequalities, a comment is appropriate. The

first two terms in the integrand are bounded in terms of the supremum norm on the factoi

involving wi. The third term in the integrand is bounded in terms of the supremum norm

on the D2y 2 factor which leads to an L2 bound on D4y2 . Now, by definition

IAs(w) - As(fv)IlY-x = sup II(A8(w) - A8(fv))yIlx

II(As(tv) - As(z^v))yjjx'Sill) 4
= o !4Y IIYIIx + lID"YIJIL 2 + IID4y21IL 2

s f3D 2 ((w - tb,)D2) Y= sup) )X

oOyEY Ilylix + IID4iy, IIL2 + I1D4y 211L 2

= sup ('D 2 ((Wl _ uh)D2Y2 )) X
o0;YEY IHyx + I1D'y L2 + I1D4Y21L 2

sup4

(f ((w1 - i0l)D'4y2 + 2(wi - tbl)'D3y 2 + (wI - iOi)"D2y 2)2 dx) 1/2
I1 supo0?ji Y Ijylix + IID4ylIL 2 + ID4Y2I1IL2

(3fo' ((w, - tl) 2(D"y2 )2+4(wl'-ii') 2(D3 Y2 )2+ (w,"1 -/ I")2(D2y 2 )2)dx) 1/2

< IZ, I sup 4

((llw 1" - 161")l, 2 + 411(w," - 10,")112 + Il11 - 0,"ll2) lID4IY2 )'/2

< 31/ 1, I sup ID4 1L2
- o"21" -IDiy2IILl

= 31/211 161111w" - 7,1"JL1

= 3.2' /2p, I IIw- _IlI, (1(8)
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so it is acceptable to choose IIA = 3 21/ 2 ]pl1.

Iypothesis 8 follows immediately, as before, since Q-1 is the resolvent of A5 .

Identification of an acceptable 2' is a several step process. Since this process has

been demonstrated in detail for a previous application, it will not be repeated here.

The first step of the solution algorithm is now described. Apply the arguments of the

P(x) case to As(uo). This yields a solution ft(t) based on the single operator As(uo). Next

apply the iterative scheme, as in the P(t, x) case. to the operator family .s(ii(!)). This

gives an evolution system U(t, s) which generate.- a. solution f(t). This i.L- just one step of

the iteration. The fixed point algorithm (from tl proof of Theorem IS) guai antecs that

the iterates will converge.

The continuous dependence result, Theorem 3.2 of [35,'p 170-171], is al)plicable to

this problem.

4.3 A immerical example

In this section a specific example is presented. The equation is the ,anie as earlier in

the chapter, but now the constants take on specific values. Also, a specific initial conditiont

vector is given. The example and the software to propagate its solution aie from [60].

Choose the following values for the constants.

a = .008

130 = 01

= .001 (169)

For the first component of vo choose

siih ii - sin r' sinnh v - sin v
u = sin Vx + cos vx - cosh I/ - sinh 1". (170)

Cos V - cosh Vt cos I/ - cosh v

This is shown in Figure 4 with v = 1.73. The choice of i satisfies co,,,')co.,h(u) = 1. 'I'i.

is required for ito to satisfy the boundary conditions necessary for it, to be in D(As).
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xo Initial Condition

0
C-

X

X100

0.OCO 0.100 0.200 0.300 0.400 0oO 0.6 0.700 0.800 0o9M 1.000

X

Figure 4. Initial value curve for the example
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Choose 0 for the second component of o.

If P, were zero, then this problem could be solved by separation of variales. The

fundamental frequency corresponds, in this case, to i = 4.73 approximately. Choose this

value for v and test the basic algorithm for convergence.

The solution algorithm is outlined now.

1. Establish values for the constants in the problem.

2. Establish a grid and assign an initial estimate to the solution at each grid point. As

the first estimate suppose that the initial condition vector is a constant solution.

3. Initialize a counter for time increments, say j = 0.

4. Evaluate the quantity f0 + Plu for each grid point, based on the cuirent estimate for

it.

5. Increment the counter: j = j + 1.

6. Propogate the al)proximate solution from I = (j - 1).\t to I = jAI. (This Step is

done with the program DGEAR from the standard Fortran package known as IMSL.)

7. If the desired final time has not been reached, go to step 5.

S. If the solution has not converged, go to step 3.

9. This completes the algorithm.

The results are presented in Figure 5. The plot is for the vertical dis,,acenient of

the midpoint of the beam. The line across the top represents the initid esti ate, which

is the initial condition as a constant solution. The next curve down is the estimate after

one iteration of the algorithm. The third curve is the estimate after two iterations. The

third iteration lies on top of the second one and cannot be distinguished, though it has

been included.

A second example, with /3, = .008. is shown in Figure 6. Nolice ihal whitle tle

spacing is different, the basic character is the same.
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'Figure 6. Example 2
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4.4 Chapter summary

The nonlinearly damped beam vibration problem has been shown to satisfy the

hypotheses of the theory developed in the previous chapter. An example has been presented

which demonstrates rapid convergence of the algorithm developed.
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V. Conclusions and Recommendations

This chapter provides a brief summary of results which have been demonstrated. It

also includes recommendations for further study.

5.1 Conclusions

A standard mathematical model for approximating the transverse i bratioji of a beam

has been generalized. The existence and uniqueness of solutions ha.e bccn i ti abl. Ad.

Certain continuous dependence results have been presented.

A nonlinear problem which was not previously known to have a solution. which could

be obtained by convergent sequences of approximations, has now been sho%% it to h ,a c such

a solution.

5.2 Future work

Several extensions are quite logical for the work containedl herein. Certainl it would

be desirable to extend the work to more general boundary conditions. This, howkcxmj, max

not. be at all straightforward. See Appendix B.

Use of the equations in a parameter identification scheme is certainly appropriate.

Indeed, it was with such use in mind that this project was undertaken. This document

pros ides the theoretical basis to mdertake a. nonlinear identification scheme alonig the lillce

of the linear equation based schemes in [12]. The implementation of muneil imetliods

for this problem should be very interesting.

Of course, issues relating to the stability, long term behavior. st abilit of ilc v i

schemes, and continuous dependence on other elements of the equation aie all of intclebt.

This would include time-dependent Trotter-Katc results, such as in [57], [48:pp 17, -19],

[32], and [41]. Nonlinear Trotter-Kato type results may be found in several reference.. See

[47:pp 469-476], [41], [50:pp 223-2241, [51:1)p 403-404], [52:pp 24-25], and [3-1] for some of

the early %ork. A good summary is in [18]. A product formula version i., a(ldebed iii [62]

and [61].
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Application of the style of analysis presented in thl work to other equations is

also of interest. For example, if the original equation had included rotary inertia, then

the nonlinear version of the equation would have beer. different. A separate analysis is

necessary. Allowing time dependence of the fundamental parameters in the derivation is

another variation that would be interesting to pursue.
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Appendix A. Derivation of the Euler-Bernoulli model

The Euler-Bernoulli model is derived as follows. The total kinetic energy of the beam

is assumed to be
T1/2 0o m(x)u'(to, x)dx.(1)

The elastic potential energy due to bending (assumed to be the total potential energy

since changes in gravitational potential will be ignored) is assumed to be

V = 1/2 j I(x)u (to, x)dx. (172)

For convenience, the product EI(x) is treated as a single entity in the equations.

The total mechanical energy in the system for the Euler-Bernoulli model is assumed

to be L
= T + V = 1/2 [m(x)u'(to, x) + EI(x)u' (to, x)]dx (173)

and the equations of motion are obtained by setting

dE/dt=0. (174)

Consider the expression for the time rate of change of the total mechanical energy.

The arguments of u are suppressed for convenience. Leibnitz rule (see [72:pg 5] or [69:pp

163,170]) is applied to take the differentiation inside the integration.

d6 d (1 [M (OU2 + I( 1t)21
d'- "di 0o T, t CqX

1L [L~)9(~ 
2  - L a ,92U) 2

dx+1 (- Jd
04/ nn 0' x2

- Jo m 1x t'x+ LI JO a~
L U 92 02U 93U

m(X)--dx + o I(x)" - (175)
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Now expand the second integral in the last expression using integration by parts. (It is

assumed that u is smooth enough to justify changes in the order of integration.)

L 2 8U dx -EI(x)- '- Eo(tu 8 EI(X)-2 dx

82u 2u L 0 L( X2

= E I(x) -a2 -L°  2

+ oLg a (EI(X)a2U dx (176)

Hence,

& fLaU( a2U a2 ( 2UA a2u a2U L
dt - = m(x). + ( I(x) - )dxa+ EI(x) x OtOx

- o- (x) 8a L (177)

It is not difficult to see that for clamped, pinned, or free boundaries the boundary terms

in this expression are zero. So, the equations of motion must come from

SLaU m( ) U + ( EI(x)y d = 0. (178)

The quantity 2 will not be zero over any interval for any interesting beam. In fact,

as time goes by, Ft will take on a wide variety of values. The only way to guarantee

d£ / dt = 0, is to require

m(X)0a2u + a 1.E(x) a.'2 = 0 (179)

for all x E [0, L] and t > 0. This is all made precise in the calculus of variations. The

terminology admissible function is used for possible values of L. See, for example [72:pp

217-220].
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In the case of constant density, constant cross section, and constant modulus of

elasticity, the equation reduces to

m.92U + E- 4 = 0. (180)

This is usually written as

utt + (ceux)xx = 0; 0 < x < L; 0 < t (181)

where, consistent with the physical situation, it is assumed that a > 0. S'ince a is a

constant the parentheses are not really necessary but they are suggestive of a more general

equation.
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Appendix B. No simple extension to other boundary conditions

Consider an example which demonstrates that the type of analysis done herein will

not carry over to spaces similar to X but with different boundary conditions. In particular,

if the boundary conditions on the first component required a zero value on the second

derivative but not on the first, then the space would not be complete.

Consider the sequence of functions

x 0<x <{- " X' 1 2
' X + 1 1 2 +1- 1

1 - 2n+2(12 n) 2--' < x < (182)
2"II<x <lI

X 2+'-lX - <

The limit of this sequence is given by

0 x=0
z(x) = limzn(x)= _X2 +  O<x<1 (183)

n-.-#o

0 X=lI

It is easy to see that each element of the sequence has second derivative zero at the

end points but the limit does not. Slight modifications of this example demonstrate that

boundary conditions other than those cited originally do not lead to a complete space in

the given norm.

One possible approach to get the second derivative under control would be to base

X on H3 x H' instead of H 2 x H0 . But, when a sequence is given as Cauchy in this new

X (with the old norm), it is not possible to show that its first components form a Cauchy

sequence in H3 . So, there is no simple answer here.
Another approach ib to let b be the completion oi te subset of n X ii deeimined

by the boundary conditions. This approach has not been fully analyzed.

Another difficulty arising from other boundary conditions is in establishing the dense-

ness of D(A) in X. In particular, Theorem 7 and its generalization in Appendix D will

not apply. But, see [12:pp 16-18,42f] and [58:pg 8, 2.51.
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Appendix C. Not the generator of an analytic semigroup

While X has been defined as a real Banach space, complex valued functions could

be allowed and the inner product modified (with conjugation of the second factor in the

integrand) to make everything proper for the possibility of extension to an analytic semi-

group.

Theorem 75 The operator -A 1 given by (26) is not the generator of an analytic semi-

group.

Proof: The proof of this theorem will be given after several preliminaries have been

established. 01

The key to the argument is Theorem 2.5.2.a,c of [58:pp 61-63]. For convenience the

relevant portion of the theorem is stated next. Its proof is in the reference as cited.

Theorem 76 Let S(t) be a uniformly bounded Co semigroup. Let A be the infinitesimal

generator of S(t) and assume 0 E p(A). The following statements are equivalent:

a S(t) can be extended to an analytic semigroup in a sector A6 = {z :1 argz 1< 6} and

IIS(z)JI is uniformly bounded in every closed subsector As', 6' < 6, of As.

c There exist 0 < b < 7r/2 and M > 0 such that

p(A) D r,= { :argA1< +61 U{o} (184)

and
M

UR(A: A)II __ - for A E E, A 0 0. (185)

Proof: See [58:pp 61-63]. 0

From Theorem 76 it is clear that the resolvent of -A must include the entire imagi-

nary axis if -A is to be the generator of an analytic semigroup. But, as will be established

for -A 1 (see (26)), the point spect;um includes infinitely many well spaced points on the

imaginary axis. Hence the conclusion.
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Lemma 77 The point spectrum of -A 1 includes arbitrarily large values on the positive

and negative imaginary axis.

Proof: First recall that -A 1 is skew-adjoint. This leads to the necessity of any eigenvalue

being on the imaginary axis. In particular, if -Au = Au then (-Alu, u) = (Au, u). But,

as was shown earlier, -A 1 is dissipative and hence Re(-Alu,u) = -Re(Alu,u) < 0.

From skew-adjointness, (-Alu,u) = (u,(-A1)*u) = (u,Aju). Thus Re(Alu,u) < 0.

Hence, Re(Alu,u) = 0. On the other hand, Re(Au,u) = Re(A(u,u)) = Re(AllulII) =

Re(A)IIuI12 , which must be zero for arbitrary u. Hence Re(A) = 0.

This has only established that any eigenvalues for -A 1 are constrained to the imag-

inary axis, it remains to show that there are eigenvalues there. This will be done in a very

direct constructive fashion. Solve

cD 0 u2 U2(186)

for A. This is the same as the system

U2 = Au1

-rD 4u, = Au 2. (187)

This can be written, by simple substitution, as

- oD 4U, = A2u1  (188)

or

D4U1 + - u = 0. (189)

It is already known that A = ifi, for some Pl, if this equation is to have a nontrivial

solution. From the complementary equation

r4 + A2 = 0, (190)
a
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which can be written
4 p2

r - =0, (191)

it is clear that the roots are

r = ill/2a 1/4, "ip1l/ 2 a-/ 4 . (192)

For convenience, let y = /1/2a-l1/4. Then

U = cle'x+c 2 e- "x+c3cos'x+c 4 sinyx

U/ 7cC1 x 
- YC2e -'Yx -c3sinyx+ 7c4 cosyX (193)

Now use boundary values to solve for the coefficients.

u(o)=o €. ci+c2 +ca=0
Ut(O) =- 0 CI" +- C2 +r c3 = 0

u'(0) =0 C1 c-C 2 +C 4 = 0

u(1) = 0 = e c e-' c 2 + c3 cosy-+ c4 siny = 0

u'(1) = 0 . e'ic - e- 1c2 - c3 sin-+ C4 COs7 = 0 (194)

The important issue here is to find 7 so that this system has a nontrivial solution. This

requires

1 1 1 0

1 -1 0 1 = 0 (195)
elf e-'Y cos7 sin7

e -e - y -sin7 cosy

This is reduced as follows.

1i 1 1 A

0 -2 -1 1
- 0

0 - ' e- f -elf + cos-, sin7

0 -et-e - ^/ -e-sin-y cosy
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-2 -1 1

-e' +e-'t -e "'+cos-, sin"i = 0

-ef-e -  -edy-sin, cosy

-2[-e yt cos y + cos 2 y + e' sin -y + sin2 Y]

+[-e" cos + e- cos 7 + e' sin1 + e-" sin 7]

+[e2 y + e7 siny - 1 e-" sin-y- e2 y + ey Scs 1 + e- t cosy] = 0

-4 + 2e'Y cos - + 2e - 7 cosy = 0
e -+ e-7

-1+ 2 cos"/ = 02

cosh-ycos' = 1

cosh7 - sect (196)

The problem has now been reduced to finding real values of y such that cosh7 = secy. But

cosh 7 is defined for all real 1 and is always greater than or equal to 1. On the other hand

secty has asymptotes at y = ( for n = .. 2,-1,0,1,2,.... Except for n = 0, each2

asymptote is approached by a unique branch of secy which intersects cosh1. (For n = 0,

two branches intersect at the same point.) Thus an infinite number of arbitrarily large

positive and negative values of -y are obtained. Now recall 7 = 1/2a-1/4, so - 72a 1/2

where a > 0 is a constant. It is clear that P can be arbitrarily large and hence so are the

A values.

This establishes the lemma. 0

Inconveniently, zero is in the spectrum of -A and hence 0 p(-A). Hence, an

adjustment is necessary to apply Theorem 76. Since -A is the generator of a Co semigroup

its resolvent set contains the positive real axis. A small shift of the problem will put 0 in

the resolvent set.

Lemma 78 The point spectrum of -A - cI includes arbitrarily large values on the line

Re(A) = -c.

Proof: The argument is exactly the same as in the previous lemma with A replaced by

A+c. 0
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Lemma 79 -A - eI is not the generator of an analytic semigroup.

Proof: By Theorem 6.1 of [19:pg 38], -A - eI is the generator of a Co semigroup of

contractions. And hence the generator of a uniformly bounded semigroup. (Or, see [30:pg

499].) To justify application of this theorem, note that -ci is a dissipative operator for

any e > 0. In particular

(Clu, u) = EUU

-- -eII II2

< 0 (197)

There is one more preliminary before the proof of the lemma. It must be established that

0 E p(-A - El). That is, show that A + EI has a bounded inverse. But, E E p(-A) -* e + A

has a bounded inverse.

Now Theorem 76 applies. Furthermore, any wedge will cross the line x = -E and

hence the sector will include elements of the point spectrum. Thus, the wedge does not lie

intirely in the resolvent set and the lemma is established. 0

This concludes the preliminaries. The proof of Theorem 75 is structured as a proof

by contradiction.

Proof: Suppose -A is the generator of an analytic semigroup. Then by Corollary

3.2.2 of [58:pg 811, -A-EI is the generator of an analytic semigroup. This is a contradiction

to the lemma just established.

The theorem follows. 0

105



Appendix D. Miscellaneous proofs

D.1 Proof of Lemma 7

Lemma: If Y E H2 and y(O) = y(l) = y'(0) = y'(1) = 0, then y E H02.

Proof: When y E H 2, it follows that yy',y" E L 2. Since y" E L2, there is some

sequence {y} C C ° such that y" -+ y".

Let y' (x) = f0 y ( ) d . Note thbt

jfY."( )dj __ olYn"( )l d

S lJy"0 ()l di
0
< n1(y,,( ))2 d (198)

which is bounded since V"' E L2 . (Note that the last inequality need not hold for y" < 1,

but in this case boundedness is obvious.) Hence Yn E L2.

Claim: yn' -* y'

vn(x) -- j y"(B) d = y'(0) + y'(x) = y'(x). (199)

Therefore, the claim holds.

Similarly, let yn(x) = fo y'( )d,, and note that yn, E L2 -. It is easy to see that

Yn E H2. If yn -+ y, then y E H 2 by the completeness of H02. But this follows by the same

line of argument used to show ynv -* y'.

A more general version of this lemma is also known, as stated below.

Lemma: Let u E Hm be given. Then u E JI' if and only if u(k)(0) = u(k)(1) = 0 for

every k < m- 1.

Proof. This is essentially a corollary to Theorem 3.3 of [56:pg 67]. It is taken from

[56:pg 91]. The proof requires several other theorems which are also in the cited text. It

will not be repeated here. 0
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D.2 Proof of Lemma 24

Let (., .) denote an inner product on a linear space X. For fixed x E X, let f(y)

(x, y). Then f is continuous.

Proof: Let Yo E X and c > 0 be given. It is sufficient to identify 6 > 0 such that

Ily - yoll < 6 I (x, y) - (x, yo) I< e. If x = 0 the result is trivial. Assume x 5 0. Then

l(x,y)-(X,yo)l = l(G,y-yo)l

< I1 1k Y- YOll.

(See [54:pg 273], [63:pg 41], or [66:pg 251] for example, for the Schwarz inequality.) But

ijxil is known since x is fixed, so choose 6 < e/IxlI. 13

D.3 Comments on the proof of Lemma 42

The cited proof omits some of the detail concerning the boundedness of IIA 11. The

Uniform Boundedness Principle must be applied. See the proof of Theorem 46 (below) for

an example of such an application.

D.4 Comments on the proof of Theorem 46

Theorem: Let {A(t)1iEo,T] be a stable family of infinitesimal generators of Co semi-

groups on X. If D(A(t)) = D is independent of t and for v E D, A(t)v is continuously

differentiable in X then there exists a unique evolution system U(t, s), 0 < s < t < T,

satisfying the 5 results of Theorem 44 where Y is the set D equipped with the norm

lIvly = Ilvjlx + IIA(o)vltx.

Proof: See [58:pp 145-146]. This appendix is to expand on one portion of the proof

cited.

The proof includes a claim that Q(t) = A0I - A(t) is an isomorphism of Y onto X.

It is appropriate to comment on the validation that Q(t) is in fact such an isomorphism.

For )A0 > w, Theorem 1.5.3 of [58:pg 20] gives existence of an inverse for Q(t) which means
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it must be 1-1. Theorem 2.16.3 of [22:pg 55] gives onto. (See also [19:pg 13].) Linearity is

clear and an algebraic isomorphism is established.

However, for a topological isomorphism, Q and Q- 1 must each be bounded. This

can be a difficult issue. First, consider the boundedness of Q.

For any v E Y, Q(t)v is continuous from the hypothesis on A(t). Hence, there is

some M, such that jjQ(t)vjyx :_ M,, for all t. Now the Uniform Boundedness Principle

(eg [65:pg 196]) applies to give a uniform bound, say MQ for IIQ I.

Next, recall that bounded, linear, one-to-one, and onto operators have bounded in-

verses (eg [73:pg 70] or [22:pg 47]). Thus, IIQ-111 is bounded.

Now it is clear that the proposed isomorphism is legitimate.

It is interesting in the above argument that IIQIy--,x is taken to be bounded by

hypothesis, yet the norm is specified separately. It is appropriate to verify that these are

consistent, ie, that Q really is bounded when considered as a mapping from the given Y

to the given X.

IIQ(t)llY-x = sup I xOo~YY Ilylly

sup 11(1 + A(t)) yllx

o " II~ly
sup 11(1 + A(O) - A(O) + A(t)) yllx

sup 11 (1 + A(0)) ylx + 11 (A(t) - A(0)) yllx

I + sup 11(A(t) - A(O)) yIx (200)

But the continuous differentiability of A(t), on a closed and bounded interval, gives Lips-

chitz continuity to A. That is, for some If, IIA(t)y - A(O)yI]x 5 Kilylix. Then

IIQ(Q)IIY-.X :_ 1 + KT. (201)
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D.5 Proof of Lemma 61

Lemma 61 Let U and V be evolution operators. Then

V(, r)y - U(i, r)y = jU(, s)(A'(s) - Av(s))V(s, r)y ds. (202)

Proof: The proof consists of taking the derivative of a cleverly chosen quantity and then

integrating the result. Recall

d (U,s) = -A(t)U(t,s)

d U(t,s) = U(t,s)A(s). (203)

Now the differentiation is presented.

d Mt,s)V(t, .s)y] = urn U(t, s + As)V(s + As, r)y - U(t, s)V(s, r)y
As--O As

= linm U(t, s + As)V(s + As, r)y - U(i, s + As)V(s, r)y
,--*O As

+ lim U(t,s + As)V(s, r)y - U(t, s)V(s, r)y
As-+O As

= lim U(t, S + As) V(s + As, r) - V(s, r)
As-*O As

+ li (, + As) _ U(t, ).V, )As--40 As

d d= U(t,s)V(s,r)y+ T-U(t,)V(s,r)y

= U(t,s)(-Av(s)V(s,r)y)+ U(t,s)A'(s)V(s,r)y

= -U(t,s)Av(s)V(s,r)y+ U(t,s)AU(s)V(s,r)y
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= U(t,s)(AU(s)- Au(s))V(s,r)y (204)

Now, integrate both sides from r to t.

U(ts)V(ts) I) = I U(t,s)(A'(s) - A(s))V(s,r)yds

U(t, t)V(t, r)y -- U(t, r)V(r , r)y = j U(t, s)(AU(s) - AV(s))V(s, r)y ds

V(t, r)y - U(t, r)y = I U(t,s)(A'(s)- A(s))V(s,r)y ds 0 (205)

A similar argument is available in [53:pg 552].

D.6 Proof of Lemma 63

Lemma: For positive real numbers a, b, and c with b > c, it follows that b < b.
-- a+c - c'

Proof: Let r,= 2+b and r2 =ac Noticethatri= +andr 2 = +, sob>c

implies r2 > rl and E2 > 1. Then, r1 b = a + b and 72c = a + c. Hence

a+ b r1b
a+c r 2c

r 2 ri b
rl r2 C
b= 0 (206)

D.7 Proofs of Lemmas 70 - 74

Lemma: For a,bv0, (a2sb2)/ 2 < a + b.

Proof: For positive values of a and b it is clear that

(a +U) = a? + 2a b + b

> a2 +b2 . (207)

The desired result follows by taking square roots. U
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Lemma: For any real numbers a and b, (a + b ' < 2(a 2 + b2).

Proof: Note that

(a-b)2 > 0

a2 - 2ab+ b2 > 0

a2 + b2 > 2ab. (208)

Now,

(a+b)2  a2 +2ab+b 2

< 2(a 2 +b 2). 0 (209)

Lemma: For positive real numbers a, b, and c it holds that (a+b+c)2 < 3(a 2+b 2+c 2).

Proof: This is a straightforward calculation.

(a+b+c) 2 = a2 +2ab+2ac+b 2 +2bc+c 2

a a2 +t (a 2 +I b 2 ) +t (a 2 + C2) + b 2 + (b 2 + c 2 ) +I c 2

= 3(a 2 +b 2 +c 2) 0 (210)

Lemma: For any positive, real a, b, and c, it holds that (a+ b + c)1/ 2 < (al/ 2 + bl/ 2 +

c1/2).

Proof. This is the same as

a + b + c < (a1/2 + b1/ 2 + cl/ 2 )2 . (211)

But,

(a1/2 + b1/2 + cl/2)2 = a + b+ c+ 2a/2b/ 2 + 2a1/ 2c1/ 2 + 20l/2cI/2

> a+b+c (212)
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and the desired result follows by taking square roots.
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or

I(I+ AA)-zll < Izll. (216)

But II(I+ AA)-II = supliz= 1{I(I+ AA)-zll} and the original form is obtained from the

last equation above. For the nonlinear case the expanded version is used for the notion of

accretive.

It is also useful, in the nonlinear case, to adopt a set theoretic representation of the

operator A. That is, for A C X x X, define

Ax = {y:[x,y]EA}

D(A) = {x:Ax#O}

R(A) = U{Ax:xED(A)} (217)

and note that this allows A to be a multivalued function.

For A, B C X x X and A E R make the natural definitions

A+B = {[x,y+z]:YEAx, zEBx}

AA = {[x,Ay]:yEAx}

A- ' = {[y,x]:[x,y]EA}. (218)

In this setting, call B C X x X accretive if (I + AB) - 1 is a function for all A > 0

and 11(1 + AB)-lx - (I + AB)-lyll < iIx - Yll for all x, y E D ((I + AB)-').

Theorem 80 (Crandall-Liggett) Let X be a Banach space. Let A C X x X and w E R,

satisfying A + wI is accretive, be given. If R(I + AA) D D(A) for all sufficiently small

positive A, then

lrn (I + a)-x (219)

exists for x E D(A) and t > 0. Moreover, if S(t)x is defined by this limit, then S(t). E

Q,(D(A)).
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Note that A is not required to be closed or densely defined or linear or accretive. Also,

note that w and A are now fixed.

The proof is best approached by first establishing a host of preliminary results. This

will, of course, require more notation. Let

J = (I+AA)- 1

D,= D(J)

IAxj = infA{jyj}. (220)

Lemma 1.2.i: Choose A > 0 such that Aw < 1. Then JA is a function, and for x, y E DA,

IIJxX - JaYll - (1 - AW)- 111X - Y11. (221)

Proof: The proof of this lemma begins with a claim.

Claim: (I1+ '-A)- has Lipschitz constant I1 + twl for t > 0, 1 + tw 0 0.

This is shown in the following.

(I+ t ' A)1x - (I+ t A) -v (222)

1 +1+t1+wj
I= t [((1 + tw)I + tA) - 1 x - ((1 + tw)I + tA) - 1 y]

+ I 1 II(1 + t(,w + A))-' x - (I + t(wlZ + A))-' yII

<i + tWII1X -YII (223)

where the ipenuality follows by the accretiveness of A +w: for t > 0, and directly for t = 0,

and establishes the claim.
Now, choose t = then A where t > 0. Hence, only those t such

that iw > -1, need be considered. The claim gives I1 + twi as a Lipschitz constant for
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(I + AA) - 1, i.e. for J\. But

I1+twI = l+tw
t
A

= (1 - Aw)- 1  (224)

and the Lipschitz constant has been validated.

Next, establish that JA is a function. The key is that A + wI is accretive and hence

(I + t(A + wI))-1 is a function for all t > 0. In particular,

(I + t(A + wI))' = (I + tA + twI)- '

= ((1 + tw)I + tA) - l

- G +10 - (1 + tw)-1 ((1 + w)I + tA) - l

1+ti

For 1 +tw 0 0 (legitimate as above) it follows that (1+t -A)1 isafunctionforallt>0.

Choose t such that A = as above and J,\ is a function. This completes the lemma. 0

As a corollary to Lemma 1.2.i

lrIx - JIyI < (1 - Aw)-'Ilx - y1I (226)

for all positive integers n.

This is established by induction. The lemma has already established the base case.

Suppose now that IIJx-l - J,\n-1 y < (1 - Aw)-(n-l)lx - yD. Let = J'-lx, . = J^'-y.

Then

IIj -jn yI=IJ~-JI

_ (1 - Aw)-1 I - P11

< (1 - Aw)-nIIx - Jll (227)
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and the corollary is established.

Note that, in the above argument, it is assumed that Jkx E DA for k = 1, 2, ... , n- 1.

Also, the fact that J,\ is a function was used to show tr.- t Jx is uniquely determined. This

can be taken as an additional hypothesis without preventing its desired use later.

As a specific application of the corollary, choose x = J,\y. Then

IIJ +1  Y - J :'I - (1 - Aw)-nIj~y - vI" (228)

Lemma 1.2.ii: Choose A > 0 such that \w < 1. Then

IIJ.x - xl < A(1 - A)-'IAxl (229)

for x E DA n D(A).

Proof: Let Ix, y] E A be given with x E D, n D(A). Let x, = (I + AA)- 1 x. Then

(I+ \A)xl = x

x = x, + AAxi

= x1 + AY1. (230)

Recall that Jx = x, is an alternate notation for (I+ AA)-lx = xi. Now

IIJAx - xI! = II1 x - x11

- IIJA(xI + Ay1) - JA(x + Ay)II

< (1 - AW)-11(xl + \y1) - (x + Av)II
= A(1 - w1 I)-yll (231)

which is valid for all y. Hence,

IIJ,\x - xII A(1 - Aw)'1 VinA fI jjj

= A(1 - Aw)-'IAxl (232)
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as desired. Note, in the above arguments, that (I + AA)x = x + AAx = x + Ay means that

x = J,\(x + Ay) for all x E D(A). Also, x, + Ay - x = 0. 0

Lemma 1.2.iii: Choose A > 0 such that Aw < 1. Let n be a positive integer,

x E D(J\), and Aiwi < 1. Then,

IJ~x - xHl n(1 - Alwl)-n+lllJ\x - xli. (233)

Proof: Observe that

n _-x = jg -j,-x+jn-l ... +j\X-x
n-1 3)
- j\ni _ jn-(i+l)) (234)

j=0

Claim: x E D(Jn) =, x E D(J- 1 ).

Since x E D(J), (I+AA)-nx is well defined. But, (I+,\A)-nx means [(I + AA)-'X]"

and its well definedness implies that of (I + AA)- 1 x. Finally,

(I+ AA)-x = (I AA)-(n- 1)(It+ AA)-lx

= (I+.A)-(n-l)S X

= JK-l(jz\) (235)

and the well definedness of all the other terms gives that of jn-1 . Inductively, the claim

holds for all terms of interest. So, all of the newly introduced terms make sense. Thus,

n-1lJa'-x,, = Z(Jn-ix -J -(i+l))l)
X-Xjj i=0

n-1

< Z( - Aw)-n+(~'+)ilJx - x11 (236)
i=0

by Lemma 1.2.i.a.

There are three cases to consider. Case 1: Aw = 0. This case is trivial.
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Case 2: Aw < 0. It is desired to show that

n-1

_( - Aw)n+(i+i)< n(1 - Aj) - n+ 1. (237)
i=O

But, Aw < 0 = 0 < -Aw, 1 < 1 - Aw. Hence, the terms in the summation are increasing.

The largest term is (I - Aw)- n+(n -1+1) - 1 and the sum is less than or equal to n. This

case will be complete if (1 - Aiwi) _< 1 (since then the inverse will be greater than or equal

to 1) which the hypothesis AIwi < 1 clearly assures.

Case 3: Aw > 0. This time

-Aw < 0

1-Aw < 1 (238)

Hence, the largest term in the sum is the first one, (I - Aw) - n+ l. The sum is less than

or equal to n(1 - Aw) - n+ '. The proof will be complete if (1 - Aw)- n+ ' < (1 - Ajw) - n+1.

But Aw > 0 = w > 0, i.e. jwj = w and the equality holds. 03

Lemma 1.2.iv: Choose A > 0 such that Aw < 1. If A > 0, 11 E R, and x E DA, then

x +- Jxx E Di (239)

and

JA\x E J, L + A,-JA\x) (240)

Proof: Since x E DA, JAx makes sense. Say

JAx = (I-+AA)-1 x

= xo, (241)

whence

x = (I+AA)xo

= xo + AAxo

.119



= xo + yo (242)

where [xo, Yo] E A. Now write

x+ - J.x L- (xo + Ayo) + X0

0Xo + yo + Xo - EXo

xO +Jyo (243)

It remains to show that xo + pyo E DA. But, [xo, Yo] E A, so xo E D(A) and

(I + tiA)xo = xo + yo. This means (I + jf) - 1 (xo + jtyo) = xo and the first part of the

lemma follows. But, recall Jx = xo and xo E J (xo + /gYo). Hence, J,x E J (xo + ityo) as

required. 0

As a corollary: If x E D(Jk), then J\z E JA ( J -x + Xj-5J.x) for all integers k.

The lemma establishes the base case. It remains to show

J'\x E J, ( LJt\ -Ix + ,\ JX 1  -- Jk+ (x)~ (244)

Let , = J*x. Then, i E J (*Jk-x + L ,) and the desired result is

J,\ E J1 + J'-' (245)

Since E D(J,\), let J,\ = (I+ AA)- = xi. Then = (I + AA)xl = x, + AAx =

x, + Ayl. Note that [xi,y] E A. Write

-X+ -- JX = L~XI + Ayl) + X

= x1 + /u1u (246)

Consider

(I + lgA)xl = x, + /pyl

x, = (I+piA)-'(xl+ py) (247)
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i.e. (xi + pYI) E Dj,. But, J\ = x, and xi E J3(xl + 1Yli) so J3 E J(xi + An) =

Jp (aj + t'A

Before presenting the next lemma, a brief review of some identities among the bino-

mial coefficients is appropriate.

ni!

B(n, m) = !
m!() - m)!

B(n,n) = 1

B(n,o0) = 1

B(n,m)+ B(n,m+ 1) = B(n + 1,m+ 1) (248)

Lemma 1.3: Let A > /t > 0, Aw < 1, and x E D(J,') n D(Jn,), where m and n are

positive integers with n > m. Let a = ., f = j. Then

M-1

!IJ~z - JElI < (1- wu)- Z ajpn-jB(n,j)IIj'-jx - xrl
j=O

n

+ Z ,(1 - w)'a"m -B(j - 1, m - 1)IlJfl- - xli • (249)
j=m

An abbreviation will be useful. For integers j and k satisfying 0 < j <n and 0 k < m,

let

akj= IIJIx - J"\xl. (250)

Also introduce ai = (1 - /w)-1  and 3 = (1 - pw) - A.?. In this notation the result of

the lemma takes the form

rn-1 n

amn < j lJfln-jB(n,j)am.-j,O + E a irnl-nm B(j - 1, m - 1)ao,n-j. (251)
j=O j=m

Proof: The proof begins with a basic inequality relating the ak,3.This will require several

steps to establish. In the definition of akj it is desirable to make the replacement

J, -J' (jk-' A- Jx). (252)

Jx = Au x +,,1
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This follows from the corollary to Lemma 1.2.iv and Lemma 1.2.i. Now,

=k~ IIJ~jx - J"XII

S(1 - PiW)-' [!IIJ'x - J-x-II + Jll - jk\

-- aalak-l,j-1 + akd-1 (253)

where the first inequality follows from Lemma 1.2.i, the second inequality uses + = 1

and the triangle inequality, and the last step is simply a change of notation. This is a basic

inequality to be used in the proof.

The proof is by induction on n. The inductive proposition P(n) is: For all m < n

m-I n

am,n E a1jpf-ljB(n,j)am.j,0 + E ajlm f3 1 B(j - 1,m - 1)ao,.-j. (254)
j=O j=m

Let n = 1, for the base case. Note that m = 1 is the only possible value for m. Claim:

The following inequality holds.

0 1

al,1 Z ill-JB(1,j)al-j,o+ aollglj-'B(j-1,O)ao,l-j
j=O j=l

flaj,o + ajao,o. (255)

The basic inequality says a1,1 :5 alao,o + /Paj,o and the base case is complete. Note

that ao,o = 0.

Now suppose that

m-I n

ar,n < c ajin- B(,j)a-j,o + E ce m 31
3j-mB(j - 1,m - 1)ao,n-i (256)

j=O j=m
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for all m < ni and seek to establish

rn-I n+1
arn,n+l ea~3jp1 n+I-B1 3 (r+1, j)am-n1 0 + E cej m fpIi-mB(j.-. 1, m- 1)ao,,+i- 6 (257)

4=0 )=M

for all m < n + 1. Start with -t*he basic inequality,

am,,+l ceiarn-i,n + Iharn,n. (258)

For each m < n the induction hypothesis applies to yield

am~n ~ + Z5 alEajIrn-p 1 (m-l)B-j - , m
j=-

nmi

+ + aim /3iPIHm B)Bj - 1, m - 1)aoOn...i

-1 n

+9 aj 1 fl3+iB(,j)amj,o + E a m Pi3+-rnB(j -1, mn - 1)ao,n-.(59

j=O =-

Note that m = n + 1 and m = 1 must be treated as separate cases. This wvill be done

later. For now, focus on the first and third summations in the preceeding inequality.

E ai3jpln3j+iB(n,j - 1)a,-.j,o + E ae1 3p~nlj+iB(n,j)am-.j0o + aln+iam~o

i= 

j= i

E 5 a1jPj"'j 3 [B(n,ji - 1) + B(n, j)] am..j,o + pfl+iam~o
j=1

rn-i

= S aijijn-j+lB(n + 1,j)am,-j,o + Plfl+lamo
j=1
rn-I

Ce j ni'ji'1 B(n + I, j)am-.j,o (260)
70O
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Next consider the second and fourth summations.

n

E a1
m Piuj +l-m [B(j - 1, m - 2) + B(j - 1, m - 1)] ao,n.-j + ajmaon_(m_ )

j=m
n

= Z a in1 J+l-mB(j , m - 1)ao,n-j + oemao,n-(m-1)
j=M

n

- ain13J+-mB(j,m- 1)ao,n-j

n+1

= a M prJ-m B(j- 1,m- 1)ao,n+l-j (261)
j=m

It is easy to see, when the terms are recombined, that the desired result is obtained.

Return now to the case m = i. It is necessary to show

0 n+l

aj,n+ aljln-j+ 'B(n + 1,j)al-j,o + a181j-.B(j - 1,O)ao,n+l-j
j=O j=1

n+1

- 1n+lal,o + E Cil1ij-1 ao,n+.-j (262)
j=1

This must be established for all n so another induction is in order. For n = 1, it is required

to establish

2al, 2 < / 1
2ai,o +- lii o1 /3 1 '-Ial, P 12 a~ o E elp 1 aO,2-j

j=1

P 8 1
2a1 ,o + alaD,1 + al3laopo. (263)

But, from the basic inequality

al,2  1ao,lj +1a 1 ,1

= ajao,i -+ P 1(aiao,o + P1aj,o) (264)

as required. (Note again that ao,o = 0.)
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Claim: The following holds.

n+2
al,n.+2 _ pIn+2 a l ,O + E li -ao,n+ 2-j (265)

3=1

From the basic inequality and the induction hypothesis it follows that

al,n+2 Ciao,n+l + P1 a1 ,+1

n+ I

= caao,n+l + Pi "+ a lo + a P1- aon . -j

j=1
n+n

- Piln+ 2al,0 + Z a, i'aO, +.s-:

'2+1n+-1

= p1,n2 al,o + E alpi'1 ao,n+2-j (266)
j=1

as required.

Now consider the case m = n + 1. This time it is required to show

n
a,+,,,+, _ Oljpln+l-j.B(n +] I, j)an+l-j,o

j=O
n+1

+ E celn+1Plj-(n+1)B(j- 1,n)ao,n+l-j
j=n+l

n

= _Z a jpln+,-jB(n + 1,j)an+lj,o + cal+l ao,o. (267)
j=0

This can best be handled by establishing the following intermediate result. Let all con-

ditions be as stated in the Lemma, except, consider n < m. The result then becomes

amn :5 EJo aIjfi-jB(n,j)am-j,o. Notice that once this is established, the desired re-

sult follows by replacing m and n with n + 1 and noting that the n + 1 term is zero.
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With attention on m > n it is appropriate to represent m by n + k where k is any

appropriate nonnegative integer. Then, proceed with induction on n for the proposition

n
P(n) = For every k, ank~ YEee jpnj(n j~nkj (268)

.1=0

Let n = 1. Then

ai+k,i clak,0 + Plak+1,o (269)

by the basic inequality. This clearly has the desired form and the base case is complete.

Suppose P(n) in order to establish P(n + 1).

an+i+k,n+l ,'iin+k,n + Planli+k,n
n n

e aiZai~in1 -jB(n, j)an+ky,o + Pi E ai3/31 -B(n, j)an+k+l.1,O
j=0 =

E ailj+pfllB(n, j)an+k...,o + E ailjpfln+1 3B(n, j)an+k+l....,o
j=O j=0

= 1,3 fln+l 3B(n * - 1)an+k+l...,o + 1:ailin+,B(n, j)an+k+l....o

j=i .1=0

-alnliak,O + E aljPi+J-[B(n,,j - 1) + B(n,j)]a+k+l..,o
1=1

+1317+1 a.+k+1,0

al +i ako + E eel in+ 3D(n + 1,j)an+k+1..j,o + Igin+lan+k+l1o

n+i

= S e a1 pln~l -B(n + 1,j)a1 +k+l...,o (7)

and the induction is conv-ilete.

This completes the proof of the lemma. 0

Before the next lemma, it is appropriate to recall tne Schwartz inequality in tne form

ESIXiViI (1IXiI,) /2 (EyI2 ) 1 2  (271)
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where the generic sums suggest that the result holds for both finite and infinite sums, eg

[54:pg 548].

Several other preliminaries are also in order. The quantity (a + #3)n will appear.

Wilte this in its binomial expansion and take derivatives with respect to a to obtain some

useful identities.

n

EB(,j)ajp"-j = (ce+#)"
j=O

n

EjB(n,j)l "fn - j = n(a + P)n-1

j=0
n ..'jB(n,j)ajn - j = an(a + P)n-1

j=o

n

,j2B(n,j)a-i-pn-j = an(n - 1)(a + pfl)n- 2 + n(a + )n-1

j=o
n

Ej 2 B(n,j)ajp-j - a 2n(n - 1)(a + p)- 2 + an(a + p)-
j=O

(272)

Recall now, that a + 0 = 1. The above then simplify to

n

B(n,,j), "p- = 1
j=0
nEjiB(nj, lP --j = cen

j=O
n

Ej 2B(n,j)a n - i = a 2 n(n - 1)+ an (273)
j=0

Some similar identities are obtained from the McLaurin series for (1 -f)--. The

series looks like
,2(1 -I)- m = 1+rn3+ m(m+--1)- - +.... (274)

But

(i-i)!
B(j-.1,m - 1) = - -( 1)

(M - 1)!( 1 (M - 1))!
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(j- )!27)

(m- 1)!(j - i)!

and it is clear that
00

B( - 1,m -1) -3n = (1 - )-,n (276)
j=m

The next step is to take derivatives with respect to 13 on both sides. This yields

00

F, (j - m)B(j - 1, m - 1)/ i -r -" =m(1 - P)-r -I

j=m

>(j-m)B(j- l,rn - 1)pj-r = r1(1 - )-rn-
j=m

00

E (i - m)2B(j - 1, mn - M)3-ni-r(m + 1)3(1 _ 13)-rn2 + m(l -p)-m-l

E (j - M) 2 B(j - 1,m-1)13-r -  = r(M + 1(1- p)- m- 2

j=

+niP(l - M) -1 (277)

Recall that 1 - P3 = a and reduce these to

00

SB(j- 1,m- 1) m/j - m  = 1
j=m

00 
M

E (jim)B(- 1,m- 1),'1j-" = rn--

00 MM+1p

E (j _ m)2B(j - 1, m - 1)rPij_ r(m+ 1) P2 r

j=m a 2  ae

(278)

Some additional modifications to the form of these equations is desired. To prepare for

them, note that

a+3 = 1

mrn1 + M 2 = m
Mi +nm2 M
- + = -2
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2  P rn/ (279)
ce2 a2 a

Now write

SjB(j -1, m - 1)+rr/ -m M
j=m a
00

E j 2B(j - 1,mr - 1)am/i3?n = - 12 4 P+2
j=M 02a+M

=r(mr+ 1)P'2 +r m(l+ 2m) + Mr2  (280)
a2  a

It is finally time to state and prove the lemma for which all these preparations have

been made.

Lemma 1.4: Let n > m > 0 be integers and a, Pi be positive numbers such that

a+#i= 1. Then

E B(n, j)a3/ini (m - j) ((na - mn)' + naP)' (281)j=O

and

r B(j -1, m- 1) m /ij-m(n-j) (r + + m- n . (282)
j=m0: a

Proof. Consider the first inequality. With n > m, apply the Schwarz inequality to write

m n

>B(n, j)o&i-j(mr- j) > B(n,j)a'/p-jlm- jl
j=0 j=O

n n j) n-j(m_ /2

E B(n, j)&j nj B(n, -

j=O \j=0
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= (m2 - 2man + a2 n(n - 1) +an1/1/2

= ((na _ Mn)2 + an(1 -,,)

= ((na - M) 2 + an# )1/2 (283)

This completes the first inequality.

Consider the second inequality.

n

j=m
00

< E B(j - 1,m- 1)a--Pri in-jl
j=m

< ( B(j - 1, m - 1)amP/-ml E B(j - 1, rn - 1)am  "-m (n - )2

2n +M +m~ n(M + 1)p 2  m( +M ) 1~/2

= 2 _2nmp 2n+m)+ a 2  + a +2 + M2

=a a 2  a 2  a a)
= + -(n m)+n 2 - 2 n m +

a2 a2  a

= (m+ (MP(n -n))2)1/2 (284)

This completes the proof of Lemma 1.4. 01

Some final preliminaries will now be presented. These are some small details that

are best established outside of the main line of argument.

Claim: If p > 0 and ltlw I < 1 then 1 - tlwI _ 1 - pw.

This is equivalent to 1uw < g#wi and is clear. Thus (1 - iwl) - 1 > (1 -

Claim: For sufficiently small positive , (1 - Aw) - m > (1 - Aw) - (m- j ) as long as

j<m.

For small positive values of A, it is clear that 1 - A wI 1 1 and hence (1 - Ajw) - 1 > 1.

Then the result is clear.
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Claim: Given e > 0, there is some positive integer N such that

1 1-- - < e whenever n, m > N (285)
m n

Consider

1 1 1 1
< -+-

m n m n
2

min{n, m}
2< 2 (286)

Choose N > 2 and the result is clear.

Claim: If n is a positive integer and t E [0, ], then (1 - t) - n < e2nt.

The proof is by induction. Let n = 1. It is required to show

(1 - 0- 1 < e2t (287)

Notice that for t = 0 the equality holds. Also note that for t = the inequality holds

strictly. This is also true in the form 1 < (1 - t)e2t . The base case will be completed by

showing that the right hand side is strictly increasing on t E [0, 1).

Let f(t) = (1 - t)e2t. Then

f'(t) = 2(1 - t)e2t - e2t

= (2-2t- 1)e2t

= (1 - 2t)e t  (288)

Sin- the derivative is ahways potive, the base case .;s now clear.

Suppose (1 -j)-n < e2nt, then

(1 - -t)- (n+ l) _. (1 - t )- 1(1 - - )- n

< (1 - 0-e
2 "
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< e2te2 nt

- e2(n+ l)t (289)

and the claim is established.

This concludes the preliminaries and the proof of the theorem will now be presented.

The first order of business is to establish the existence of the limit.

Let x E D(A). Assume A > A.> 0, n > m, Aiwi < 1. Assume x E D(J'm) n D(J,).

The plan is to establish that J nx is a Cauchy sequence for rational values of p. and A,

then an appeal to continuity will complete the problem. Most of the previous lemmas are

used in the algebra.

i-1

I j ., , )xI 1 - n Er Z &pnhjB(n,j)jjJ7\-x - xl
j=O

n

+ E (1 - wit)-j"pj-mB(j - 1, m - 1)IIJ,-jx - xl
j=m

* (1 - 1,1)-n E a pn-jB(n,j)lIJm'-jx - xli
j=O

n

+ n (1 - Ajwl)-jam1j-mB(j - 1,m - 1)lIJn-jx - xl
j=rn

* (1- 1W)-n Z ajpn-jB(n,j)(m - j)(1 - Ajl )-(--j)+ lIJ\x - x1l
j=O

n
+ (1 - pIlI)- mPi mB(j - 1, m- 1)(n- j)(1 - iwl)-(n-j)+llJ.x - xlI

j=m

*~~~~~ ~ &~ j~)nj- lj- Eap-B(n,j)(m - j)
j=O+A(l- 11)-n1 - am I-mB(5- 1,m- 1)(n-5) lAx!

j=mI

[A2~~wie~AH((ncr _M)2 +nap3)1

e2npwI P+ ( + m - n) 2 ) 1/2] lAx
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A [A2jwj(np+mA) 2A! _ rn) 2 + nA A/,) 1/2

±e 2n~I A +(MA- 21/21-JAX
n ,2  A -)

e Ae2w(np+mA) n2L2 2nmrn + m2 + _ t2)1/2

+pe2 i w 2 t i _- nr 2) IA.I

- 2w I(np+mA) ( 2  + ) (1/2

+e21w ln u (mA2 - mpA + (mA - nti)2) 12] IAxI

= [e21wl(n-+m.) ((nIL - mA) 2 + np(A -
2))9/2

+e21wlnu (m.(A -- t) + (mA - np)2) 1/2 ] I~x (290)

This establishes a slightly tighter bound than the paper gives for its equation 1.9. However,

no additional strength is given to the theorem.

For any given t and sufficiently large n and m, legitimate values of p and A are given

by I, and - respectively. Some preparation is needed to substitute this in to the inequality

above. The purpose for all this is to establish a result for rational values and then appeal

to continuity. The following are useful for substitution.

nA =mA =

nl +mA = 2t

nlp-mA = 0

= mA - ni

np(A -,) =t 0
t' 2( 11)

= mA(A-p) (291)
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Substitution yields

IIjtn -JmI s e21wl2t)t (1 - 1/+ e21.It ( 1 )1/2] tAxi

= e4tlwlt (1 _ 1)1/2 + e2IwItt 1- 1f1/2]Jx
< 2e 4lw(1 _ 1)1/2 Jx

( 1i1 -, 1)1/2 JAxi (292)

Recall that w is fixed (from the very beginning) and that consideration is currently

being given to a particular x. The limit

lim Jnx (293)

exists since the terms have just been shown to form a Cauchy sequence in a Banach space.

From the corollary to Lemma 1.2.i

ii~~'X - itnnII 5 (1 - -W IX - Y11 (294)

Recall that

lim 1- = e- t . (295)
n-ooo

Let
S(t)x = lM Jt/nx. (296)

n--+oo

Then S(t) has ewt as a Lipschitz constant. Thus, if S is a semigroup, then S E Q,.

The definition of S for elements of D(A) has been given. But S must be defined on

all of X. The extension will rely on the denseness of D(A) in X. Let x E .)(A)\D(A) be

given. There is a sequence {xi} of elements in D(A) which converges to x. The issue to

be resolved is the existence of

nlim J/nx. (297)
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Let E > 0 be given. Choose N1 such that i > N, implies IIx1 - xli < j-r. Choose N2 such

that for any i, j > N1 and n > N2 it follows that

lIJt'nxi - Jtn/xjll < 2e'llxi - xjll. (298)

Let N = maxf{N1, N2}. Then

IIJ nxi- nxjll <C (299)

and the sequence is Cauchy as desired. Also,

IIJxi - /xI= IIjt/xi - 1 'm~ Jt',xiII

< 2e 'llxi - xjll

- 2ewtlxi - x + x - jIlI
I-<2e-', c

2ewt

= e. (300)

Now it makes sense to define

S(t)X= lim lim Yjnjx. (301)
n--4oo i.-*oo - .(3 1

The Lipschitz continuity of S(t) will now be established. Let -> t > 0 be given. For

x E D(A), legitimate values of I and A are given by I and Z respectively. Choose n = mn n

in equation 1.9 and write

jIJ/nx - jtnnxll (t- r) 2 + t t ) 1 2e211(t+,)

+ (7. n + (7-- t)2) e/21eIt] IAxI

n0m IIJ/.x - jt/nxll _ i - 1e21wi t+ ) + (r - t)e 2IL] IAxI

= (r - t)jAxj (e2 1wi(t+1 ) + e 2wIt) (302)
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But,

lM IIJ./nX - Jt/nXII = II M J/nXz- lim JnXII
n-o -'+O0 n"+oo

= IIS(O)X - S(t)XII (303)

Thus S(t)x is Lipschitz continuous in t for x E D(A) and bounded t intervals.

Claim: For x E D(A), S(t)x is continuous as a function of t.

Let x E D(A)\D(A) be given. There is a sequence {x} -- x where each xi is

in the domain of A. Let c > 0 be given. It is required to find some 6 > 0 such that

IIS(t)x - S(T)xII < c whenever 11" - tIl < 6. But, for any xi

IIS(i')xi - S(t)xII _ It - TI IAxI (e2lwl(t+T) + e2wlt) (304)

Furthermore, IIS(t)xi - S(t)xII < c/3 for sufficiently large i. Then

IIS(r)x - S(t)xII = IIS(r)x - S(r)xi + S(r)x, - S(t)xi + S(t)xi - S(t)XII

_ IIS(r)X - S(r)XII + IIS(r)Xi - S(t)XjIl + IIS(t)Xj - S(t)XII
(305)

< c/3 + it - TI IAxi (e2IWl(t+T) + e2Iwlt ) + c/3.(35

All that remains is to choose 6 such that

It tAxi (e21w1(t+T) + e2Iwlt) <C/3 (306)

That is, it is required that

6 IAxI (e2w21 + e2IwIt) < C/3 (307)

where i is the maximum allowable value for t.

Choose
= (308)4 1AxI (e4Iwli + e2jw1t)
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and the claim follows.

It is clear, from the definition of the J,\ terms, that S(0) is the identity. The previous

claim, applied for t = 0 gives the continuity required for S E Q,. The proof is concluded

with the establishment of S(t + r) = S(t)S(r). As has been the pattern, there are a few

preliminaries. Namely, by applying the definition and previously established continuity

results, it follows that

[s~~oli -[in,%]
[5(i)] = lirn In

- rn[jtn]f

(309)

Also, it now follows that

S(mt) = Im n
n-oJo /

= lim mk
k-.+00 m/ik

= [S()]iM  (310)

It will now be established that the semigroup property holds for rational values of t

and T. Let 1, k, r, and s be positive integers. Then

r)= S(is +rk)

[s (L)1 s+ ,, k

r 1 )1~] [S(I rk-is (-5' ,s(5'
L \,/J l \]ks]

S= (311)

But, since S(t) is continuous as a function of t and Lipschitz as an operator on X, it

follows that the relationship holds for all real numbers. 0
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